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Imaging has played a variety of roles in the study of Alzheimer disease (AD) over the past four
decades. Initially, computed tomography (CT) and then magnetic resonance imaging (MRI)
were used diagnostically to rule out other causes of dementia. More recently, a variety of
imaging modalities including structural and functional MRI and positron emission tomogra-
phy (PET) studies of cerebral metabolism with fluoro-deoxy-p-glucose (FDG) and amyloid
tracers such as Pittsburgh Compound-B (PiB) have shown characteristic changes in the
brains of patients with AD, and in prodromal and even presymptomatic states that can
help rule-in the AD pathophysiological process. No one imaging modality can serve all pur-
poses as each have unique strengths and weaknesses. These modalities and their particular
utilities are discussed in this article. The challenge for the future will be to combine imaging
biomarkers to most efficiently facilitate diagnosis, disease staging, and, most importantly,
development of effective disease-modifying therapies.

THE CHANGING ROLES AND SCOPE
OF NEUROIMAGING IN ALZHEIMER
DISEASE

here has been a transformation in the part
Tplayed by neuroimaging in Alzheimer dis-
ease (AD) research and practice in the last dec-
ades. Diagnostically, imaging has moved from a
minor exclusionary role to a central position. In
research, imaging is helping address many of
the scientific questions outlined in Selkow et al.
(2011): providing insights into the effects of

AD and its temporal and spatial evolution. Fur-
thermore, imaging is an established tool in drug
discovery, increasingly required in therapeutic
trials as part of inclusion criteria, as a safety
marker, and as an outcome measure.
Concomitantly the potential of brain imag-
ing has expanded rapidly with new modalities
and novel ways of acquiring images and of ana-
lysing them. This article cannot be comprehen-
sive. Instead, it addresses broad categories of
structural, functional, and molecular imaging
in AD. The specific modalities included are
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magnetic resonance imaging (MRI; both struc-
tural and functional) and positron emission
tomography (PET; for assessment of both cere-
bral metabolism and amyloid). These modal-
ities have different strengths and limitations
and as a result have different and often comple-
mentary roles and scope.

Imaging in the Diagnosis and Prognosis of AD

The uncertainty inherent in a clinical diagnosis
of AD has driven a search for diagnostic imag-
ing markers. A definitive diagnosis still re-
quires histopathological confirmation and the
inaccessibility of the brain means imaging has
a key role as a “window on the brain.” Histori-
cally, imaging—first computed tomography
(CT) and then MRI—was used only to exclude
potentially surgically treatable causes of cogni-
tive decline. Now its position in diagnosis
also includes providing positive support for a
clinical diagnosis of AD in symptomatic indi-
viduals by identifying characteristic patterns
(signatures) of structural and functional cere-
bral alterations. We can now also visualize the
specific molecular pathology of the disease—
amyloid deposits—with amyloid imaging.
Alongside this increasing specificity for AD,
imaging also contributes to differential diagno-
sis in practice by identifying alternative and/or
contributory pathologies. Imaging is central
to identifying vascular and non-AD degenera-
tive pathologies and has helped in the recogni-
tion of the prevalence of mixed pathology in
dementia.

In the setting of mild cognitive impairment
(MCI) (Petersen 2004), the determination of
underlying pathology carries immediate prog-
nostic importance. Only a fraction of patients
with MCI progress to clinical AD over 5—10
years (Petersen et al. 1999; Ritchie et al. 2001;
Visser et al. 2006) and a recent meta-analysis
concluded that most people with MCI will not
progress to dementia even after 10 years of
follow-up (Mitchell and Shiri-Feshki 2009).
Two community-based studies have shown
over one-third of patients diagnosed with
MCI at baseline may eventually return to nor-
mal cognition (Larrieu et al. 2002; Ganguli

et al. 2004). Obviously, it would be of great
value to be able to predict which MCI subjects
were destined to progress to a clinical diagnosis
of AD. This is true even in the absence of
disease-modifying treatments, but will be espe-
cially critical when disease-modifying treat-
ments become available.

Looking to the future, imaging has helped
establish that there is a long preclinical and
presymptomatic period where the pathological
effects of AD are detectable. Although more
data are needed, imaging is starting to provide
prognostic information at this early preclinical
stage. The need for an earlier and more cer-
tain diagnosis will only increase as disease-
modifying therapies are identified. This will
be particularly true if, as expected, these thera-
pies work best (or only) when initiated at the
preclinical stage.

Understanding the Biology of AD

Importantly, imaging has a major role to play in
improving our understanding of this disease (or
diseases). Uniquely, imaging is able to delineate
in life the location within the brain of the effects
of AD. Together with this topographical infor-
mation imaging can quantify multiple different
aspects of AD pathology and assess how they
relate to each other and how they change over
time. The clinical correlations of these changes
and their relationships to other biomarkers
and to prognosis can be studied. Ultimately
the role of imaging in improving our under-
standing of the biology of AD underpins all its
applications and is a theme that runs through
the following sections of this article.

STRUCTURAL MRI IN AD
Basics of Structural MRI as Applied to AD

MRI utilizes the fact that protons have angular
momentum which is polarized in a magnetic
field. This means that a pulse of radiofrequency
can alter the energy state of protons and, when
the pulse is turned off, the protons will, on
returning to their energy stage, emit a radiofre-
quency signal. By a combination of different gra-
dients and pulses, “sequences” can be designed
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to be sensitive to different tissue characteristics.
In broad terms structural MRI in AD can be div-
ided into assessing atrophy (or volumes) and
changes in tissue characteristics which cause
signal alterations on certain sequences such as
white matter hyperintensities on T2-weighted
MRI as a result of vascular damage. A number
of MR sequences that are sensitive to micro-
structural change (e.g., magnetization transfer
or diffusion) have shown alterations in AD.
These sequences are already important research
tools; however, they have not yet found a place
in routine clinical practice in AD and they will
not be considered further here.

Utility of Structural MRI in the Study of AD
Atrophy in AD

Progressive cerebral atrophy is a characteristic
feature of neurodegeneration that can be visual-
ized in life with MRI (best with T1-weighted
volumetric sequences; see Fig. 1). The major
contributors to atrophy are thought to be

Brain Imaging in Alzheimer Disease

dendritic and neuronal losses. Studies of re-
gional (e.g., hippocampal) MRI volumes have
shown these are closely related to neuronal
counts at autopsy (Bobinski et al. 2000; Gosche
et al. 2002; Jack et al. 2002). The pattern of loss
differs between diseases reflecting selective
neuronal vulnerability and/or regional disease
expression. AD is characterized by an insidious
onset and inexorable progression of atrophy
that is first manifest in the medial temporal
lobe (Scahill et al. 2002). The entorhinal cortex
is typically the earliest site of atrophy, closely
followed by the hippocampus, amygdala, and
parahippocampus (Lehericy et al. 1994; Chan
et al. 2001; Dickerson et al. 2001; Killiany et al.
2002). Other structures within the limbic lobe
such as the posterior cingulate are also affected
early on. These losses then spread to involve the
temporal neocortex and then all neocortical
association areas usually in a symmetrical fash-
ion. This sequence of progression of atrophy
on MRI most closely fits histopathological stud-
ies that have derived stages for the spread of
neurofibrillary tangles (Braak and Braak 1991).

Figure 1. This series of three coronal T1-weighted studies, from an individual with autopsy-proven Alzheimer
disease (AD), were each acquired ~1 yr apart and show progressive hippocampal (H) atrophy as the individual
progressed from memory complaints (left column, t = 0) to MCI (center, t = 1y) and on to fulfill criteria

for AD.

Cite this article as Cold Spring Harb Perspect Med 2012;2:a006213 3



fco;ﬁ\b Cold Spring Harbor Perspectives in Medicine

PERSPECTIVES

Voo’

www.perspectivesinmedicine.org

K.A. Johnson et al.

Nonetheless, a significant minority of AD cases
have atypical presentations and in these cases
the pattern of atrophy accords with clinical phe-
notype: with language presentations particu-
larly having left temporal atrophy and visual
variants having posterior cortical atrophy.

It is increasingly clear that by the time a
typical AD patient comes to diagnosis atrophy
is well established. Even in mildly affected indi-
viduals (e.g., mean MMSE of ~24/30) entorhi-
nal volumes are already reduced by ~20-30%
and hippocampal volumes by ~15-25% (Chan
et al. 2001; Dickerson et al. 2001; Schuff et al.
2009). Because rates of hippocampal atrophy
in mild AD are ~3-5% per year (Barnes et al.
2009) this suggests that there must have been a
period of several years before diagnosis where
medial temporal lobe atrophy was already in
process. Longitudinal MRI studies of individu-
als who are initially asymptomatic but who sub-
sequently develop AD support this suggestion
and find that hippocampal volumes are already
reduced by about 10% 3 years before receiving
a diagnosis of dementia due to AD and that
rates of hippocampal atrophy increase gradually
some 5 years before diagnosis. By the time a clin-
ical diagnosis is made, atrophy is also quite wide-
spread with whole brain volumes down by
~6%; rates of loss having gradually accelerated
(at ~0.3% /yr*) in the 2—4 years up to a diagno-
sis (Chan et al. 2003; Ridha et al. 2006; Jack
et al. 2008b).

Assessment of medial temporal atrophy on
MRI has been shown to have positive predictive
value for AD. Visual assessment differentiates
mild AD from normal aging with a sensitivity
and specificity of ~80-85% (Scheltens et al.
1992; Duara et al. 2008; Burton et al. 2009).
Differentiating MCI subjects who will progress
to AD in the near future from those who will
not is a more difficult task: Medial temporal
atrophy on MRI is still a very significant pre-
dictor of progression with sensitivity and
specificity of ~50—70% for distinguishing indi-
viduals who will progress to AD from those who
will not (Korf et al. 2004; DeCarli et al. 2007).
For these reasons medial temporal lobe atro-
phy now forms one of the biomarkers of AD
included in proposed criteria for diagnosing

(prodromal) AD at a pre-dementia stage
(Dubois et al. 2007). The severity of hippocam-
pal atrophy tends to be greater in AD than in
dementia with Lewy bodies (DLB) or vascular
dementia (VaD)—when matched for clinical
severity. Nonetheless, hippocampal atrophy is
a feature of DLB and VaD, and in frontotempo-
ral dementia (FTD) can be more severe anteri-
orly than in AD (Barber et al. 2000; Chan
et al. 2001; McKeith et al. 2005; Burton et al.
2009). The differential diagnosis of AD there-
fore needs to take into account the overall
pattern of imaging (and other) features of these
dementias: for instance, focal frontal /temporal
lobar atrophy on MRI would point to a diagno-
sis of FTD, whereas marked signal changes in
white matter may suggest VaD (Chan et al.
2001; Scheltens et al. 2002; Likeman et al.
2005; Rabinovici et al. 2007; Frisoni et al.
2010). The overall pattern of atrophy is used
in clinical practice and there is interest in auto-
mated pattern classification of MRI to predict
AD at an early stage and to distinguish it from
other dementias (Kloppel et al. 2008; Misra
et al. 2009; Vemuri et al. 2009).

Measuring Progression in AD with
Structural MRI

The fact that pathologically increased cerebral
atrophy starts early (even presymptomatically),
continues relentlessly, at least until individuals
are severely affected, and correlates with clinical
decline has led to atrophy on MRI being sug-
gested as a marker of disease progression and
a potential outcome measure in trials. The
amount, distribution, and rate of cerebral atro-
phy are all closely correlated with cognitive
deficits (Hua et al. 2008; Ridha et al. 2008;
Cardenas et al. 2009; Fox et al. 1999b). In the
absence of an intervention cerebral volume
loss in AD has clear, direct, and profound neg-
ative clinical consequences. Epidemiological-
autopsy studies of individuals with and without
dementia showed that, whereas plaques, tan-
gles, and atrophy are all associated with demen-
tia, atrophy was the factor that most strongly
correlated with dementia at all ages (Savva
et al. 2009). It appears that histopathological

4 Cite this article as Cold Spring Harb Perspect Med 2012;2:a006213
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hallmarks of AD are markers of disease process
whereas the clinical state is captured by the
extent of neurodegeneration—for which atro-
phy may be considered an in vivo measure.
Rates of regional and/or global atrophy on
MRI have as a result been proposed as outcome
measures in trials seeking to show a disease-
modification effect in AD; the motivation for
this is the potentially increased power to detect
a disease-slowing effect. Sample size calcula-
tions based on natural history studies would
support this with only ~20% as many patients
being expected to be needed for the same effect
using MRI measures than if clinical scales were
used (Fox et al. 2000; Jack et al. 2008a; Ridha
et al. 2008; Schuff et al. 2009). Rates of hippo-
campal and whole brain atrophy on MRI have
to date been the most widely included imaging
measures in trials; however, other MRI meas-
ures show promise, including cortical thickness
or composites of change (Lerch et al. 2005; Hua
et al. 2008; Jack et al. 2008a; Vemuri et al. 2009).
The validation of this approach, however, awaits
the discovery of disease-modifying therapies
particularly as therapies may have an effect on
progression of volume loss through mecha-
nisms other than reduced rates of neuronal
loss (e.g., hydration, inflammatory, and anti-
inflammatory effects) (Fox et al. 2005a). It is
likely that multiple imaging and fluid bio-
markers will be included in trials that seek to
understand as well as measure effects on disease
progression.

Availability and Utility of Structural MRI

An obvious strength of MRI is its availability. A
testament to its value in diagnosis in dementia
is the fact that European and U.S. guidelines rec-
ommend that all subjects with cognitive decline
undergo structural imaging (MRI or CT) and
that it is part of proposed diagnostic criteria
for AD and for other dementias (Waldemar
et al. 2000; Knopman et al. 2001; McKeith
et al. 2005; Dubois et al. 2007). In most centers,
MRI is regarded as an essential investigation in
dementia—a marker of its utility. Although
not as rapid as CT, a typical high-resolution
volumetric sequence can be acquired in 5-10

Brain Imaging in Alzheimer Disease

min and more basic sequences in considerably
less time. MRI is safe and as it does not involve
ionizing radiation individuals can be imaged
serially without concerns about carcinogenicity.
MRI offers a range of different sequences that
can probe different tissue characteristics provid-
ing multiple clinical and research measures in
the same session. Atrophy as an outcome meas-
ure has strengths over clinical measures because it
isnot subject to practice effects or (realistically) to
floor or ceiling effects, and it theoretically has a
greater ability to detect disease slowing. MRI
measures of atrophy reflect cumulative neuronal
damage which in turn is directly responsible for
clinical state. When compared with other imag-
ing markers (and other biomarkers) cerebral
atrophy has, as a strength, its strong correlation
with cognitive decline.

Limitations of Structural MRI in AD

Structural MRI lacks molecular specificity. It
cannot directly detect the histopathological
hallmarks of AD (amyloid plaques or neurofi-
brillary tangles) and as such it is downstream
from the molecular pathology. Cerebral atrophy
is a nonspecific result of neuronal damage and,
whereas certain patterns of loss are characteristic
of different diseases, they are not entirely spe-
cific. Atrophy patterns overlap with other dis-
eases and unusual forms of AD have atypical
patterns of atrophy too. In more severely affected
individuals and those with claustrophobia, MRI
may not be tolerated whereas a rapid CT scan
may be more feasible. In terms of measuring
progression, volume changes on MRI may be
produced by factors other than the progression
of neuronal loss and as such assessment of dis-
ease modification may be obscured, at least in
the short term, by such spurious effects. As the
name implies, structural MRI cannot assess
function; this is provided with increasing
sophistication by functional MRI and PET.
Opverall the availability, ease of use, and mul-
tiple applications of structural MRI in AD mean
it will play a central role in research and practice
for some years to come. Increasingly, the other
(complementary) modalities described in this
article will address the weaknesses of MRI.

Cite this article as Cold Spring Harb Perspect Med 2012;2:a006213 5
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FUNCTIONAL MRI IN AD

Basics of Functional MRI as Applied to AD

Functional MRI (fMRI) is being increasingly
used to probe the functional integrity of brain
networks supporting memory and other cogni-
tive domains in aging and early AD. fMRI is
a noninvasive imaging technique which pro-
vides an indirect measure of neuronal activity,
inferred from measuring changes in blood
oxygen level-dependent (BOLD) MR signal
(Ogawa et al. 1990; Kwong et al. 1992). Whereas
fluoro-deoxy-p-glucose (FDG)-PET is thought
to be primarily a measure of synaptic activity,
BOLD fMRI is considered to reflect the inte-
grated synaptic activity of neurons via MRI sig-
nal changes because of changes in blood flow,
blood volume, and the blood oxyhemoglobin/
deoxyhemoglobin ratio (Logothetis et al. 2001).
fMRI can be acquired during cognitive tasks,
typically comparing one condition (e.g., encod-
ing new information) to a control condition
(e.g., viewing familiar information or visual
fixation on a cross-hair), or during the resting
state to investigate the functional connectivity
(fc-MRI) within specific brain networks. Fc-
MRI techniques examine the correlation be-
tween the intrinsic oscillations or time course
of BOLD signal between brain regions (Fox
et al. 2005b), and have clearly documented the
organization of the brain into multiple large-
scale brain networks (Damoiseaux et al. 2006;
Vincent et al. 2006). Both task-related and
resting fMRI techniques have the potential to
detect early brain dysfunction related to AD,
and to monitor therapeutic response over rela-
tively short time periods; however, the use of
fMRI in aging, MCI, and AD populations thus
far has been limited to a relatively small number
of research groups.

Utility of Functional MRI in the Study of AD

Much of the early fMRI work in MCI and AD
used episodic memory tasks, and was focused
on the pattern of fMRI activation in hippo-
campus and related structures in the medial
temporal lobe. In patients with clinically
diagnosed AD, the results have been quite

consistent, showing decreased hippocampal ac-
tivity during the encoding of new information
(Small et al. 1999; Rombouts et al. 2000; Kato
et al. 2001; Gron et al. 2002; Machulda et al.
2003; Sperling et al. 2003; Remy et al. 2004;
Golby et al. 2005; Hamalainen et al. 2007). Sev-
eral studies have reported increased prefrontal
cortical activity in AD patients (Grady et al.
2003; Sperling et al. 2003; Sole-Padulles et al.
2009), suggesting that other networks may
increase activity as an attempted compensatory
mechanism during hippocampal failure.

A relatively small number of fMRI studies
have been published in subjects at risk for AD,
including MCI subjects and genetic at-risk
individuals yielding somewhat discrepant find-
ings. Several studies have reported decreased
mesial temporal lobe (MTL) activation in
MCI (Small et al. 1999; Machulda et al. 2003;
Johnson et al. 2006; Petrella et al. 2006) and
genetic at-risk subjects (Smith et al. 1999;
Lind et al. 2006a,b; Trivedi et al. 2006; Borghe-
sani et al. 2007; Mondadori et al. 2007; Ring-
man et al. 2010). Interestingly, several fMRI
studies have reported evidence of increased
MTL activity in at-risk subjects, particularly
among very mild MCI subjects (Dickerson
etal. 2004, 2005; Celone et al. 2006; Hamalainen
et al. 2006; Heun et al. 2007; Kircher et al. 2007;
Lenzi et al. 2009), and cognitively intact indi-
viduals with genetic risk for AD (Bookheimer
et al. 2000; Smith et al. 2002; Wishart et al.
2004; Bondi et al. 2005; Fleisher et al. 2005;
Han et al. 2007; Filippini et al. 2009). It is likely
that these discrepant results are related to spe-
cific paradigm demands, stage of impairment,
and behavioral performance. A common fea-
ture of the studies reporting evidence of
increased fMRI activity is that the at-risk sub-
jects were able to perform the fMRI tasks rea-
sonably well. In particular, the event-related
fMRI studies have found that hyperactivity
was observed specifically during successful
memory trials, which suggested that hyperactiv-
ity might represent a compensatory mechanism
in the setting of early AD pathology (Dickerson
and Sperling 2008; Sperling et al. 2009).

Cross-sectional studies suggest that the
hyperactivity may be present only at early stages
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of MCI, followed by a loss of activation in late
stages of MCI, similar to the pattern seen in
AD patients (Celone et al. 2006). Longitudinal
studies furthermore suggest that the presence
of hyperactivity at baseline is a predictor
of rapid cognitive decline (Bookheimer et al.
2000; Dickerson et al. 2004; Miller et al.
2008a), and loss of hippocampal function on
serial fMRI (O’Brien et al. 2010). The mecha-
nistic underpinnings of MTL hyperactivation
remain unclear; however, these new longitudi-
nal data suggest that hyperactivity may be a
marker of impending neuronal failure. This
phenomena may reflect cholinergic or other
neurotransmitter up-regulation (DeKosky et al.
2002), aberrant sprouting of cholinergic fibers
(Masliah et al. 2003), inefficiency in synaptic
transmission (Stern et al. 2004), increased cal-
cium influx, and evidence of excitotoxicity
(Palop et al. 2007; Busche et al. 2008).

Converging data suggest that memory func-
tion is subserved by a network of brain regions,
which includes not only the MTL system, but
also a set of cortical regions, including the pre-
cuneus, posterior cingulate, lateral parietal, lat-
eral temporal, and medial prefrontal regions,
collectively known as the “default network”
which typically deactivate during memory
encoding and other cognitively demanding
tasks focused on the processing of external stim-
uli (Raichle et al. 2001; Buckner et al. 2008).
Recent studies have also suggested that the
default network shows markedly abnormal
responses during memory tasks in clinical AD
patients and in subjects at risk for AD (Lustig
and Buckner 2004; Celone et al. 2006; Petrella
et al. 2007a; Pihlajamaki et al. 2008, 2009).
Interestingly, it is the same default network
regions that typically show beneficial deactiva-
tions in healthy subjects, particularly, the poste-
rior cingulate/precuneus (Daselaar et al. 2004;
Miller et al. 2008b), which tend to manifest a
paradoxical increase in fMRI activity (or loss
of normal default network deactivation) in
both at-risk groups and clinical AD patients
(Petrella et al. 2007b; Pihlajamaki et al. 2008;
Fleisher et al. 2009; Sperling et al. 2010).

There has been a recent emphasis on BOLD
fMRI techniques to study spontaneous brain

Brain Imaging in Alzheimer Disease

activity and the interregional correlations dur-
ing the resting state. These studies have clearly
documented the organization of the brain into
multiple large-scale brain networks (Damoi-
seaux et al. 2006; Vincent et al. 2007). Interest-
ingly, both independent component analyses
and “seed-based” connectivity techniques have
shown the robust intrinsic connectivity between
the posteromedial nodes of the default network,
in particular the posterior cingulate /precuneus,
with the hippocampus. Multiple groups have
confirmed impaired intrinsic functional con-
nectivity in the default network during the rest-
ing state in MCI and AD (Greicius et al. 2004;
Rombouts et al. 2005, 2009; Sorg et al. 2007;
Bai et al. 2008; Koch et al. 2010) over and above
more general age-related disruption of large-
scale networks (Andrews-Hanna et al. 2007;
Damoiseaux et al. 2008). One recent study sug-
gests that these resting fMRI techniques may be
more readily applied to at-risk clinical popula-
tions than task fMRI (Fleisher et al. 2009).
Fc-MRI may be particularly advantageous for
use in clinical trials, as no special equipment is
required, subjects do not have to be able to per-
form a cognitive task, and a resting run could be
added to the end of a safety or volumetric MRI
protocol. Additional longitudinal work is need-
ed to determine if longitudinal changes in fc-
MRI will parallel clinical decline.

Interestingly, the default network regions
showing aberrant task-related fMRI activity
and dysconnectivity in MCI and AD also over-
lap the anatomy of regions with the highest
amyloid burden in AD patients (Fig. 2; Klunk
et al. 2004; Buckner et al. 2005, 2009; Sperling
etal. 2009). Several recent studies in cognitively
normal older individuals with evidence of amy-
loid deposition on PET imaging have shown
evidence of disrupted default network activity
during memory tasks and at rest (Hedden
et al. 2009; Sheline et al. 2009; Sperling et al.
2009), suggesting these markers may be partic-
ularly useful to track response to antiamyloid
therapies in preclinical trials.

fMRI, either during cognitive paradigms or
during resting state, may hold the greatest
potential for the evaluation of novel pharmaco-
logical strategies to treat AD. Several studies in
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PiB-PET
amyloid imaging

fMRI activity during
memory encoding

Figure 2. (Left) Group map of fMRI activity showing
regions that increase activity (yellow/red) or decrease
(blue) activity during successful encoding. (Right)
Group map of 11C-PiB retention in a group of non-
demented older individuals. Note the anatomic over-
lap of PiB retention to default network (regions in
blue on left).

healthy young and older subjects suggest that
fMRI can detect acute pharmacological effects
on memory networks (Thiel et al. 2001; Sperl-
ing et al. 2002; Kukolja et al. 2009). To date,
only a few small fMRI studies have shown
enhanced brain activation after acute or pro-
longed treatment with cholinesterase inhibitors
in MCI and AD, although these studies were not
conducted as typical double-blind, placebo-
controlled trials (Rombouts et al. 2002; Goe-
koop et al. 2004; Saykin et al. 2004; Shanks
et al. 2007; Bokde et al. 2009; Venneri et al.
2009). fMRI is now being incorporated into a
small number of investigator-initiated add-on
studies to ongoing Phase II and Phase III trials,
which should provide some valuable informa-
tion regarding the potential utility of these tech-
niques in clinical trials.

Limitations of fMRI in AD

There are multiple challenges in performing
longitudinal fMRI studies in patients with
neurodegenerative dementias. It is likely that
fMRI will remain quite problematic in examin-
ing patients with more severe cognitive impair-
ment, as these techniques are very sensitive to
head motion. If the patients are not able to
adequately perform the cognitive task, one of
the major advantages of task fMRI activation
studies is lost. Resting state fMRI may be more
feasible in more severely impaired patients.

It is critical to complete further validation
experiments. BOLD fMRI response is known

to be variable across subjects, and very few stud-
ies examining the reproducibility of fMRI acti-
vation in older and cognitively impaired
subjects have been published to date (Clement
and Belleville 2009; Putcha et al. 2010). Longi-
tudinal functional imaging studies are needed
to track the evolution of alterations in the
fMRI activation pattern over the course of the
cognitive continuum from preclinical to pro-
dromal to clinical AD. It is also important
to evaluate the contribution of structural atro-
phy to changes observed with functional imag-
ing techniques in neurodegenerative diseases.
Finally, longitudinal multimodality studies,
including structural MRI, fMRI, and FDG-PET
and PET amyloid imaging techniques, are
needed to understand the relationship between
these markers, and the relative value of these
techniques in tracking change along the clinical
continuum of AD (Jack et al. 2010).

FLUORODEOXYGLUCOSE (FDG) PET IN AD
Basics of FDG PET as Applied to AD

Brain FDG PET primarily indicates synaptic
activity. Because the brain relies almost exclu-
sively on glucose as its source of energy, the
glucose analog FDG is a suitable indicator of
brain metabolism and, when labeled with Fluo-
rine-18 (half-life 110 min) is conveniently de-
tected with PET. The brain’s energy budget is
overwhelmingly devoted to the maintenance
of intrinsic, resting (task-independent) activity,
which in cortex is largely maintained by glu-
tamaturgic synaptic signaling (Sibson et al.
1997). FDG uptake strongly correlates at auto-
psy with levels of the synaptic vesicle protein
synaptophysin (Rocher et al. 2003). Hence,
FDG PET is widely accepted to be a valid bio-
marker of overall brain metabolism to which
ionic gradient maintenance for synaptic activity
is the principal contributor (Schwartz et al.
1979; Magistretti 2006). In this context, a single,
specific AD-related alteration in FDG metabo-
lism has not been identified and therefore the
FDG-PET abnormalities described below are
assumed to be the net result of some combi-
nation of processes putatively involved in the
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pathogenesis of AD including, but not limited
to, expression of specific genes, mitochondrial
dysfunction, oxidative stress, deranged plasti-
city, excitotoxicity, glial activation and inflam-
mation, synapse loss, and cell death.

Utility of FDG PET in the Study of AD

The Pattern of FDG Hypometabolism
Is an Endophenotype of AD

A substantial body of work over many years has
identified a FDG-PET endophenotype of AD
(Fig. 3)—that is, a characteristic or signature
ensemble of limbic and association regions
that are typically hypometabolic in clinically
established AD patients (Foster et al. 1983;
Reiman et al. 1996; Minoshima et al. 1997; De
Santi et al. 2001). The anatomy of the AD signa-
ture includes posterior midline cortices of the
parietal (precuneus) and posterior cingulate
gyri, the inferior parietal lobule, posterolateral
portions of the temporal lobe, as well as the
hippocampus and medial temporal cortices.
Metabolic deficits in AD gradually worsen
throughout the course of the disease. Bilateral
asymmetry is common at early stages, more

Normal

Alzheimer
disease

Figure 3. Transaxial FDG-PET images of a normal
control subject and a patient with mild AD. Note
severe hypometabolism (yellow and blue cortical
regions) in association and limbic cortex. These are
the typically involved brain regions that define the
FDG endophenotype of AD. They include posterio-
medial parietal (precuneus), lateral parietal, lateral
temporal, and medial temporal lobes. This pattern
slowly worsens in parallel with symptoms and is well
correlated at autopsy with AD pathologic diagnosis.

Brain Imaging in Alzheimer Disease

advanced disease usually involves prefrontal
association areas, and in due course even pri-
mary cortices may be affected. Interestingly,
the regions initially hypometabolic in AD are
anatomically and functionally interconnected
and form part of the large-scale distributed
brain network known as the default mode net-
work (Raichle et al. 2001). We now know in
addition that these regions are highly vulnera-
ble to amyloid-B (AB) deposition (Klunk et al.
2004; Buckner et al. 2005).

Less severe or consistent hypometabolism
has been identified in MCI patients, some of
whom were found on follow-up examination
to have converted to AD (Arnaiz et al. 2001;
de Leon et al. 2001; Jagust et al. 2002, 2007; Che-
telat et al. 2003; Caselli et al. 2008; Langbaum
et al. 2009; Landau et al. 2010). Differences
in FDG between MCI and normal aging have
not typically been large, but the control groups
in most of these studies were likely contami-
nated with a number of individuals who,
although clinically normal, were amyloid posi-
tive (see below) and possibly in earlier phases
of preclinical AD. FDG hypometabolism paral-
lels cognitive function along the trajectory of
normal, preclinical, prodromal, and established
AD (Minoshima et al. 1997; Furst et al. 2010);
however, higher levels of brain and cognitive
reserve are well known to attenuate the strength
of these correlations and highly intelligent AD
patients can be clinically mild, but severely
hypometabolic (Stern et al. 1992; Alexander
et al. 1997). Coexisting vascular disorders, in-
cluding ischemia, amyloid angiopathy, and
micro-hemorrhage, potentially confound the
relation of FDG to clinical phenotype, but the
classic AD FDG pattern is well correlated with
histopathologic diagnosis of AD at autopsy
(Hoffman et al. 2000; Jagust et al. 2007).

FDG Hypometabolism Is Related to Other
AD Biomarkers and to Genes

The association between amyloid deposition
and brain function in AD has been studied
with FDG PET. Longitudinal data has shown
that, once the stage of established AD is reach-
ed, amyloid deposition in most regions has
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plateaued (Engler et al. 2006; Jack et al. 2009),
but FDG continues to decline along with cogni-
tive function (Engler et al. 2006). Several groups
have observed high amyloid deposition in pari-
etal regions to be associated with co-localized
FDG hypometabolism, possibly indicating a
local toxicity (Klunk et al. 2004; Engler et al.
2006; Edison et al. 2007; Cohen et al. 2009).
In other groups, this association was not statisti-
cally significant, possibly because the amyloid
burden in these patients was already at its pla-
teau (Kadir et al. 2008; Furst et al. 2010). An
important clue to this relationship could lie in
the observation that the relation is consistently
weaker in frontal regions, where some of the
highest amyloid burdens are found (Klunk
et al. 2004; Edison et al. 2007). Interestingly,
amyloid-positive MCI patients in one study
had preserved FDG metabolism that was pos-
itively correlated with extensive Pittsburgh
Compound-B (PiB) retention, possibly suggest-
ing a mediating role for metabolism, perhaps
either as a brain reserve factor or as an accelerant
of deposition (Cohen et al. 2009). Additional
longitudinal data will be required to clarify
these relationships, but clearly FDG metabolism
appears to be changing as amyloid is accumulat-
ing. It is possible that FDG data could signal an
intermediate stage between the initiating patho-
logic event and the subsequent development of
synaptic failure and neurodegeneration (Cohen
et al. 2009).

Brain volume loss is also observed in AD
hypometabolic areas, but the FDG findings
have generally survived MRI-based corrections
for cortical atrophy (Meltzer et al. 1996; Ibanez
et al. 1998; Jagust et al. 2006; Cohen et al. 2009;
Lowe et al. 2009; Rabinovici et al. 2010), sug-
gesting that volume loss and function loss are
separable phenomena in AD. Both domains
of data are reported to have predictive power:
FDG hypometabolism that predicts ultimate
development of AD occurs before impairment
(de Leon et al. 2001; Jagust et al. 2006) and brain
volume loss has also been reported in cogni-
tively normal individuals who go on to develop
AD (Fox et al. 1999a; Jack et al. 2004). System-
atic comparison of two imaging biomarkers
requires caution because of rapidly evolving

technology. For example, recently developed
methods for subject-specific MRI segmentation
have revealed subtle cortical thinning in a distri-
bution similar to that seen with FDG (Walhovd
et al. 2009; Karow et al. 2010). A continuing
challenge is presented by the fact that FDG-
PET data inherently contains volume informa-
tion, and PET-based partial volume correction
(e.g., with deconvolution [Tohka and Reilhac
2008]), may eventually be useful to disentangle
FDG retention and structural loss.

Initial reports associating FDG hypome-
tabolism and AD-related CSF measures have
varied, likely due in part to image and fluid sam-
ple processing differences. FDG was associated
with low CSF A and increased CSF tau in amy-
loid-positive clinically normal older individuals
(Petrie et al. 2009), but with CSF AB and not tau
in an Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) study of AD, MCI, and controls,
adjusted for diagnosis (Jagust et al. 2009).

Carriers of the apolipoprotein-E (APOE) €4
allele have a higher risk of developing AD, and
the classic AD pattern of hypometabolism
described above is seen in cognitively normal
APOE €4 carriers (Reiman et al. 1996, 2005).
A relationship of this FDG pattern to serum
cholesterol and to an aggregate cholesterol-
related genetic score in middle age has also
been reported (Reiman et al. 2008, 2010).
Maternal history of dementia has recently
been related both to increased PiB retention
and to FDG hypometabolism in AD-related
areas among asymptomatic individuals (Mos-
coni et al. 2009, 2010).

FDG PET Is a Valid AD Biomarker

Over the course of three decades of inves-
tigation, FDG PET has emerged as a robust
marker of brain dysfunction in AD. Its principal
value is twofold: first, clinical utility has been
documented when confounding conditions
(e.g., DLB or frontotemporal lobar degenera-
tion [FTLD]), are in question. Thus, when
frontotemporal rather than temporoparietal
hypometabolism is prominent, a clinically
uncertain AD diagnosis may be changed to
FTLD (Foster et al. 2007); when prominent
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occipital hypometabolism is found in addition
to temporoparietal, the data are highly sugges-
tive of DLB (Albin et al. 1996; Mosconi et al.
2008).

Second, FDG has emerged as a robust bio-
marker of neurodegeneration with which hypo-
metabolism can be observed to precede the
appearance of cognitive symptoms and to pre-
dict the rate of progressive cognitive decline in
individuals who are later found to have pro-
gressed to AD (de Leon et al. 2001; Jagust
et al. 2006). FDG hypometabolism is also pre-
dictive of the rate of memory decline in APOE
€4 carriers with mild memory loss over 2 years
(Small et al. 2000). Most importantly for AD
treatment research, a recent analysis of ADNI
FDG data found that AD and MCI groups
each showed progression of AD-like hypome-
tabolism over 1 year that paralleled changes
in a standard clinical endpoint, the clinical
dementia rating scale (CDR) sum-of-boxes
(Chen et al. 2010). These authors calculated
that the use of FDG PET in clinical trials of
AD therapy could reduce sample sizes by
approximately one order of magnitude.

The Limitations of FDG PET in AD

FDG PET is relatively expensive and, like all
PET techniques, has more limited availability,
although its use in oncology has dramatically
increased availability in the USA over the past
decade. It requires intravenous access and in-
volves exposure to radioactivity, although at
levels well below significant known risk. Brain
FDG retention is a nonspecific indicator of
metabolism that can be deranged for a variety
of reasons (e.g., ischemia or inflammation)
and may in certain individuals be irrelevant
or only indirectly related to any AD-related
process.

AMYLOID PET IN AD

Basics of Amyloid PET as It Is Applied to AD

An important “first principle” of amyloid imag-
ing in the context of AD is that amyloid PET
is intended first and foremost as an in vivo

Brain Imaging in Alzheimer Disease

surrogate for AR pathology, and not necessar-
ily as a surrogate for clinical diagnosis. As dis-
cussed below, there are diagnostic applications
of amyloid imaging, but these share the same
strengths and limitations as postmortem deter-
minations of AR content. Another important
principle of amyloid imaging is that the sub-
strate for all currently known AR tracers is
fibrillar AR in a beta-sheet conformation (Iko-
nomovic et al. 2008). When speaking of the
binding substrates of amyloid tracers, it is pref-
erable to think in terms of fibrillar and nonfi-
brillar AR rather than visual descriptions of
plaques as fleecy, amorphous, diffuse, compact,
cored, neuritic, etc., because there can be vary-
ing amounts of fibrillar AR in any of these pla-
que types. Compact, cored, and neuritic plaques
typically have large amounts of fibrillar amyloid
and fleecy and amorphous plaque deposits
typically have very little (particularly in the cer-
ebellum). However, diffuse plaques are not a
precisely defined term and can have widely
varying amounts of fibrillar AB from case to
case. Along similar lines, cerebrovascular amy-
loid typically has a high degree of fibrillar AR
and appears to be a very good substrate for amy-
loid tracer binding (Bacskai et al. 2007; Johnson
et al. 2007; Lockhart et al. 2007; Ikonomovic
et al. 2008). Increasing recognition has been
given to the toxicity of oligomeric species of
AP and this is described in Mucke and Selkow
(2011). Although it is possible that currently
available amyloid tracers could bind to oligom-
ers of AR in a beta-sheet conformation once
they reach a necessary size (probably at least a
trimer or tetramer), the in vivo signal of amy-
loid tracers is not directly representative of these
species because of their low concentration rela-
tive to insoluble AR fibrils. However, there may
be a relationship between the amyloid PET
signal and oligomer concentration based on
the existence of an equilibrium between mono-
mers, oligomers, and fibrillar AB. Although
claims have been made that some tracers can
image neurofibrillary tangles, there have been
no validation studies in this regard. To the con-
trary, there is evidence that some amyloid trac-
ers do not bind neurofibrillary pathology (Klunk
et al. 2003; Ikonomovic et al. 2008).
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With regard to specific amyloid imaging
agents, this review will discuss “amyloid tracers”
in general, while acknowledging that most of
the statements are derived from data on the
most widely evaluated PET tracer, PiB (Klunk
et al. 2004). At the time of writing, there have
been one or two, small published studies
using each of the fluorine-18-labelled tracers,
[F-18]florbetaben (18F-BAY94-9172 or AV-1;
Rowe et al. 2008), [F-18]florbetapir (AV-45;
Wong etal. 2010; Clarketal. 2011) and [F-18]flu-
temetamol (3’'F-PiB or GE-067; Nelissen et al.
2009; Vandenberghe et al. 2010) in AD patients.
Although the PiB PET findings may ultimately
be found to extend to these F-18-labeled tracers
as well, this cannot be assumed until appropriate
studies have been repeated with each individual
tracer or until pharmacological equivalency to
PiB has been established by direct comparison
in the same subjects.

Utility of Amyloid PET in the Study of AD

The obvious strength of amyloid imaging is
that it has allowed the determination of brain
AP content to be moved from the pathology
laboratory into the clinic. Amyloid imaging
can detect cerebral B-amyloidosis and appears
specific for this type of amyloid pathology,
giving negative signals in pathologically con-
firmed cases of prion amyloid (Villemagne
et al. 2009), pathologically confirmed pure
a-synucleinopathy (Burack et al. 2010), as well

as in apparently pure cases of tauopathy in
semantic dementia (Drzezga et al. 2008).

In the setting of clinical dementia, particu-
larly in clinically atypical presentations, this
has important diagnostic utility. Reviewing
recent publications from 15 research groups
who have performed amyloid PET on clinically
diagnosed AD patients, 96% of AD patients
were amyloid positive (Fig. 4; Kemppainen
et al. 2006; Aizenstein et al. 2008; Edison et al.
2008; Shin et al. 2008; Drzezga et al. 2009; Hed-
den et al. 2009; Lowe et al. 2009; Maetzler et al.
2009; Wolk et al. 2009; Devanand et al. 2010;
Forsberg et al. 2010; Jagust et al. 2010; Rabino-
vici et al. 2010; Roe et al. 2010; Rowe et al. 2010;
Tolboom et al. 2010). One assumption is that
amyloid-negative demented patients diagnosed
as AD have been given an incorrect diagnosis.
Another possibility is that amyloid imaging
was simply not sensitive enough in some
patients and these patients would become amy-
loid positive over time. One follow-up of three
amyloid-negative subjects initially diagnosed
as AD (Klunk et al. 2004), has shown that all
three subjects have remained amyloid negative
for 5 years (Kadir et al. 2010), suggesting that
sensitivity was not the issue and that these
patients are not likely to have AD as the cause
of their cognitive deficits. On the other side of
the coin are amyloid-positive patients who
have been diagnosed with a dementia other
than AD. In the case of FTD, it has been
assumed that patients who present with a

Figure 4. PiB PET Images of normal control, MCI, and AD subjects showing a range of amyloid-f3 deposition.
Most controls show no evidence of amyloid-f3 deposition (NC — ), but a substantial portion (~25%) do (NC+).
Most patients with MCI show moderate (MCI+) or severe amyloid-f deposition (MCI++), but as many as
40%—50% show no evidence of amyloid- pathology (MCI—). The vast majority of clinically diagnosed AD

patients show heavy amyloid-f deposition (AD).
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clinical FTD syndrome but have AD-like amy-
loid PET scans are really atypical presentations
of AD (Rabinovici et al. 2007, 2008; Engler
et al. 2008), but pathological verification re-
mains to be done. These patients will be partic-
ularly important to identify when there are
effective treatments for AD directed at AR
deposition.

In the setting of MCI, combined data from
nine amyloid PET studies show that 161 of
272 MCI patients were amyloid positive
(59%) (Fig. 4; Forsberg et al. 2008; Koivunen
et al. 2008; Lowe et al. 2009; Okello et al. 2009;
Tolboom et al. 2009; Wolk et al. 2009; Devanand
et al. 2010; Jagust et al. 2010; Rowe et al. 2010).
Five of these studies included longitudinal clin-
ical follow-up for 1-3 years on 155 MCI
patients and showed that 57 of these 155 pro-
gressed to clinical AD (37%) and 53 of these
57 were amyloid positive at baseline (93%);
only four of 54 amyloid-negative MCI patients
progressed to clinical AD in these studies
(7%) (Forsberg et al. 2008; Koivunen et al.
2008; Okello et al. 2009; Wolk et al. 2009; Jagust
et al. 2010).

The most substantial contribution of amy-
loid imaging may come in the setting of the cog-
nitively normal elderly. It is at this clinically
“invisible” stage that detection of underlying
cerebral B-amyloidosis (the sine qua non of
AD pathology) may give us the greatest insights
into the very beginnings of this disease. Further-
more, it may be at this asymptomatic stage that
our chances are greatest of discovering truly
effective treatments. In a series of studies from
13 sites, 155 of 651 (24%) of cognitively normal
controls showed evidence of cerebral AR depo-
sition (Fig. 4; Kemppainen et al. 2006; Mintun
et al. 2006; Edison et al. 2008; Shin et al. 2008;
Hedden et al. 2009; Lowe et al. 2009; Maetzler
et al. 2009; Wolk et al. 2009; Devanand et al.
2010; Jagust et al. 2010; Rabinovici et al. 2010;
Roe et al. 2010; Rowe et al. 2010; Tolboom
etal. 2010). In most cases, the degree of amyloid
deposition was fairly easy to distinguish from
that typically seen in AD (Aizenstein et al.
2008), but this is not always the case. The prev-
alence of amyloid positivity is related closely to
age and apolipoprotein-E allele status (Morris

Brain Imaging in Alzheimer Disease

et al. 2010; Rowe et al. 2010). Although some
subtle cognitive effects of PET amyloid positiv-
ity may be discernable in this population (Rentz
etal. 2010), in most cases the overriding conclu-
sion is that there is no tight, direct relationship
between amyloid PET and cognition at these
earliest stages of AR deposition. As discussed
above, other protective or vulnerability factors
must be invoked to fully explain the connection
between early PET amyloid positivity and cog-
nitive impairment. It is possible that the failure
to directly assess oligomeric AR concentration
could preclude the demonstration of amyloid
PET-related cognitive effects, but vulnerability
factors (such as subclinical cerebrovascular dis-
ease) and brain/cognitive reserve factors are
likely to play a role as well (Kemppainen et al.
2008; Roe et al. 2008, 2010; Cohen et al. 2009;
Rentz et al. 2010).

In Blennow et al. (2011), CSF biomarkers
are discussed. There is clearly a large overlap
in the information available from CSFAR42 lev-
els and amyloid PET, but each technique has its
advantages and limitations (see below). The
advantages of amyloid PET center around the
regional information and in the continuously
variable nature of the biological changes. The
latter refers to the fact that decreases in CSF
AB42 appear to occur early (at least as early as
changes in amyloid PET) and precipitously—
achieving its final level very early in the course
of the pathophysiological spectrum of AD—
probably presymptomatically (Blennow and
Hampel 2003; Hansson et al. 2006; Fagan
et al. 2007, 2009). That is, the change in CSF
appears to be a step-function and longitudinal
studies have not shown a progressive decrease
in CSF AB42 over time (Buchhave et al. 2009).
This is not surprising given that typical concen-
trations of AR found in insoluble deposits
in AD cortex are approximately 5000 pg/L
(~1 ww), while typical CSF AB42 concen-
trations are around 0.5 pg/L—or 0.01% of
insoluble cortical AB. Thus, it is not surprising
that relatively little cortical AR would need to
deposit before a new equilibrium would be
established with CSE This has an important
implication for clinical trials: As an outcome
measure, CSF AB42 is not likely to normalize
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until the vast majority of cortical AR deposits
are removed. Thus, CSF AB42 and amyloid
PETare likely to be equivalent as screening tools
for clinical trials, but the more dynamic nature
of amyloid PET and the fact that amyloid tracer
retention correlates directly with AR load (Iko-
nomovic et al. 2008) makes this a more suitable
outcome measure when the goal is to detect
changes in brain AP load. In support of this
statement, the ability of amyloid PET to show
an amyloid-lowering effect of passive immuno-
therapy in humans has already been reported
(Rinne et al. 2010).

A unique strength of amyloid PET across the
entire clinical spectrum is the regionally specific
nature of the quantitative data. Although we
often reduce imaging data to a single number
(e.g., mean cortical retention), we must remem-
ber that a strength of any imaging technique
is the wealth of regional information that is
supplied. Although amyloid PET can quantify
amyloid load throughout the brain, it is not
clear what pool of brain A is represented by
changes in CSF AB. One study has suggested
that CSF AR is most tightly correlated with amy-
loid retention in brain regions adjacent to CSF
spaces (Grimmer et al. 2009).

The Limitations of Amyloid PET in AD

Major deterrents to the widespread use of amy-
loid PET remain cost and availability. Availabil-
ity has been improved by the development of
F-18-labeled agents that can be distributed to
PET scanners not associated with a cyclotron.
Cost remains an issue, especially where CSF
measurement of AB42 can provide very similar
information when the question is simply the
presence or absence of brain AR deposition.
Being an early event in the pathogenesis of
AD, amyloid PET is not a good surrogate
marker of progression during the clinical stage
of the disease (Engler et al. 2006; Kadir et al.
2010). This role is filled much better by struc-
tural MRI and FDG PET (Jack et al. 2010).
Similarly, amyloid imaging gives much more
of a binary diagnostic readout than tech-
niques such as MRI and FDG PET. That is, amy-
loid imaging has a certain specificity for the

pathology of AD, but when that pathology is
absent, a negative amyloid PET scan will be
identical regardless of the non-AD etiology of
the dementia. In contrast, MRI and FDG PET
may give an indication of a frontotemporal or
vascular pathology when an amyloid PET
scan would be ambiguously negative in both
cases. The threshold of sensitivity of amyloid
PET has yet to be precisely determined, but it
is clear that some level of amyloid deposition
is histologically detectable prior to the in vivo
signal becoming “positive” (Cairns et al. 2009).

SUMMARY
State-of-the-(Imaging)-Art

In this chapter we briefly reviewed the most
commonly used imaging technologies: struc-
tural and functional MRI and FDG and amyloid
PET. Other MRI techniques such as diffusion
tensor imaging (DTI) and associated tractogra-
phy technologies, arterial spin labeling meas-
ures of cerebral blood flow and PET tracers
targeted at the cholinergic system, microglial
activation and other tracers in development
are also contributing to our basic understand-
ing of AD. A particularly exciting pursuit
is PET ligands targeting the other major
AD pathologic hallmark, the neurofibrillary
tangle. Biomarkers of tau have been a particular
challenge because of the need to target binding
to something other than the B-sheet fibril
dominated by AP deposits and the relatively
smaller total mass of tau deposits, but steady
progress is being made to achieve sufficient
ligand affinity and selectivity. It should be clear
from the above discussions that no single
imaging technique can provide all of the
answers. Fortunately, the strengths and weak-
ness of the available imaging technologies are
largely complementary. This has led to a variety
of “multi-modal” imaging studies in which sev-
eral techniques are simultaneously or sequen-
tially applied to the same subjects for the same
period of time. These direct comparisons have
contributed greatly to our understanding of
AD and the strengths and limitations of each
technique.
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Looking to the Future: The Role of Imaging in
the Treatment of AD

The search for therapies that can modify the
course of AD—to slow, delay, or prevent it—is
clearly our most important challenge. That
search has in turn led to a search for imaging
markers that can be used as outcomes in drug
discovery and trials. The value of any imaging
technology will ultimately be determined by
its contribution to meeting the challenge of
finding and using effective therapies. This value
includes contributions toward diagnosis. The
large variability, intrinsic to clinical outcomes
in AD, means that studies relying purely on clin-
ical measures are necessarily large and conse-
quently very costly. Using clinical outcomes to
power studies to establish meaningful disease-
slowing effects may require complicated designs
and thousands of subjects. A major aim in aca-
demia and industry has been to find biomarkers
that could identify disease-slowing effects ear-
lier and/or with significantly fewer subjects
exposed to treatment. Imaging is being increas-
ingly incorporated into trial designs to measure
the effects of a therapy on fibrillary amyloid
(with amyloid imaging) on atrophy (with
MRI) and on metabolism (PET and fMRI).

As increasingly biologically active therapies
are studied, so too have side effects increased.
Imaging is emerging as a means of detecting
potential adverse effects that can initially be
clinically silent or go unrecognized because of
a patient’s level of cognitive impairment and
confusion (Salloway et al. 2009). Particularly
with more biologically active therapies, regular
monitoring, or so-called safety scans, are now
a prerequisite in such trials.

The recognition that it may be necessary to
intervene at a very early stage to effect disease
modification has led to interest in “prevention”
studies. Preclinical intervention studies, almost
by definition, are difficult to power on clinical
outcomes. Imaging and other biomarkers are
likely to be needed to select subjects for these
studies and to provide outcome measures that
can assess whether therapies are having a
disease-modifying effect that could potentially
translate into a delay in clinical onset.

*
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