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Developing Therapeutic Approaches to
Tau, Selected Kinases, and Related Neuronal
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Correspondence: kbrunden@upenn.edu

A hallmark of the Alzheimer disease (AD) brain is the presence of inclusions within neurons
that are comprised of fibrils formed from the microtubule-stabilizing protein tau. The
formation of misfolded multimeric tau species is believed to contribute to the progressive
neuron loss and cognitive impairments of AD. Moreover, mutations in tau have been
shown to cause a form of frontotemporal lobar degeneration in which tau neuronal in-
clusions observed in the brain are similar to those seen in AD. Here we review the more
compelling strategies that are designed to reduce the contribution of misfolded tau to
AD neuropathology, including those directed at correcting a possible loss of tau function
resulting from sequestration of cellular tau and to minimizing possible gain-of-function
toxicities caused by multimeric tau species. Finally, we discuss the challenges and potential
benefits of tau-directed drug discovery programs.

INTRODUCTION TO TAU PATHOLOGY
AND GENETICS

The Alzheimer disease (AD) brain contains
two key pathological features that are used

to make a definitive diagnosis; extracellular
deposits referred to as senile plaques, and neu-
ronal intracellular inclusions called neurofibril-
lary tangles (NFTs). As discussed in detail in
other articles of this volume, senile plaques are
comprised of fibrils of amyloid b (Ab) peptides
(Glenner and Wong 1984) that are formed dur-
ing proteolytic processing of the amyloid pre-
cursor protein (APP) (Kang et al. 1987). Here

we focus on the other hallmark of the Alzheimer
disease (AD) brain, the NFTs that are formed
from insoluble fibrils of tau protein (Kidd
1963; Lee et al. 1991). More specifically, we review
the likely involvement of misfolded tau in the
neurodegeneration and memory impairments
observed in AD, and present possible therapeutic
strategies to ameliorate tau-mediated pathology.

Tau is highly enriched within neurons of
the central nervous system, in which it appears
to play an important role in the formation and
stabilization of microtubules (MTs) (Drechsel
et al. 1992; Gustke et al. 1994). MTs are critical
to neuronal function, serving as conduits on
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which key cellular components are transported
along axons. In the human CNS, there are six
major tau isoforms that are generated by differ-
ential splicing of exons 2, 3, and 10 of the tau
transcript (Fig. 1) (Goedert et al. 1989; Andrea-
dis et al. 1992). The inclusion or exclusion of
exon 10 results in tau species that contain either
four (4-R) or three (3-R) microtubule-binding
repeats, respectively, with the ratio of 3-R-
to-4-R tau being �1 in the normal brain
(Hong et al. 1998). In AD and other related
neurodegenerative “tauopathies,” which include
Pick’s disease, progressive supranuclear palsy
(PSP), and corticobasal degeneration (CBD),
misfolded and hyperphosphorylated tau accu-
mulates as insoluble fibrils primarily within
neuronal cell bodies (as NFTs) and in processes
(as neuropil threads or dystrophic neurites), but

also as tau inclusions in astrocytes and micro-
glia (Lee et al. 2001; Ballatore et al. 2007b).
The presence of tau inclusions in AD and a large
number of other neurodegenerative tauopathies
suggests that these deposits somehow contrib-
ute to development of synaptic deficits and
neuronal loss. In fact, cortical NFT density cor-
relates well with cognitive decline in AD unlike
senile plaque burden (Wilcock and Esiri 1982;
Braak and Braak 1991; Arriagada et al. 1992;
Gomez-Isla et al. 1997), which occurs early
and appears to reach a plateau prior to the onset
of clinical symptoms. Indeed, �90% of the tau
pathology burden in AD is in dystrophic neu-
rites so that tangle counts underestimate the
total burden of tau pathology (Mitchell et al.
2000). Proof that altered tau function and/
or structure can cause neurodegeneration has

R1l2l1
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l1

l1

l2
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R1
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R3
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R4
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R2 R3 R4

1 45 74 103 244 275 306 337 369 441

Proline-rich region MT binding domain

Figure 1. Schematic of the longest human tau isoform and the other major tau isoforms found in humans that
are generated through posttranscriptional splicing of exons 2 (I1), 3 (I2), and 10 (R2). The inclusion or exclusion
of exon 10 results in tau with four or three binding repeats within the MT binding domain (4R-tau or 3R-tau),
respectively. Amino acid numbers are depicted along the bottom of the longest tau isoform.
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been provided by the discovery that Frontotem-
poral Dementia with Parkinsonism linked to
Chromosome 17 (FTDP-17) results from muta-
tions in the tau gene (Hong et al. 1998; Hutton
et al. 1998). Although there are no reported tau
mutations in AD, the similarities in tau pathol-
ogy observed in the various tauopathies sug-
gests that tau plays a pivotal role mediating
neurodegeneration in all of these diseases.

The tau mutations observed in FTDP-17
fall into two general classes; those that affect
the splicing of exon 10, such that the 4-R-to-
3-R tau ratio is increased, and those that alter
tau structure and function. The latter are pre-
dominantly located within the MT-binding do-
mains (Goedert and Jakes 2005). These FTDP-17
mutations offer an opportunity to understand
how tau alterations might lead to neurodegen-
eration, and current tau gain-of-function and
loss-of-function hypotheses, as discussed fur-
ther below, have resulted largely from studies
of mutated tau. For example, it is known that
4-R tau binds MTs more avidly than 3-R tau
(Panda et al. 2003), and thus FTDP-17 muta-
tions that result in increased 4-R tau because
of altered splicing of exon 10 (Hong et al.
1998) might lead to an overstabilization of MTs
with resulting axonal dysfunction. Conversely,
FTDP-17 mutations within the MT-binding
domains of tau generally reduce the binding
of tau to MTs (Hasegawa et al. 1998; Hong
et al. 1998; Dayanandan et al. 1999), perhaps
leading to a destabilization of MTs. In addition,
mutations that reduce tau binding to MTs could
increase the concentration of unbound tau and
thus promote the formation of tau multimers
and fibrils that have been proposed to elicit a
direct toxic effect on neurons. Many of the
tau coding-region mutations in FTDP-17 also
promote enhancement of tau oligomerization
and fibrillization (Hong et al. 1998; Nacharaju
et al. 1999; Barghorn et al. 2000; Avila et al.
2006). Finally, in vitro tau assembly studies have
suggested that under reducing conditions, 4R
tau forms fibrils more readily than 3R tau (Barg-
horn and Mandelkow 2002; Jeganathan et al.
2008). As a reducing environment is generally
maintained in cells, the exon 10 splicing muta-
tions that increase 4R tau may also accelerate

tau aggregation in patients. This observation may
provide a simple explanation of why the two types
of tau mutations that appear to have opposing
effects on microtubule binding result in a broadly
similar clinical and pathological syndrome.

Although the FTDP-17 mutations provide
important evidence that tau misfolding and
multimerization can lead to neurodegenera-
tion, the absence of tau mutations in AD sug-
gests that other tau changes and/or factor(s)
are required to initiate tau pathogenesis in this
disease. For example, posttranslational phos-
phorylation of tau appears to cause structural
and functional changes that mimic those ob-
served with FTDP-17 mutations and tau pro-
teins isolated from paired helical filaments
(PHFs) from AD brains do not bind to MTs
unless they are dephosphorylated (Bramblett
et al. 1993). The ability to recapture MT binding
on dephosphorylation provides evidence that
modulation of tau phosphorylation may be a
viable therapeutic strategy. Tau is phosphory-
lated at multiple serine (ser) and threonine
(thr) residues (Buee et al. 2000; Avila 2006),
and increased phosphorylation at many of
these sites results in reduced tau binding to MTs
(Alonso et al. 1996; Wagner et al. 1996; Merrick
et al. 1997) and/or a greater propensity for
tau to assemble into fibrils (Alonso et al. 1996;
Necula and Kuret 2004). However, phosphory-
lation at certain sites prevents tau fibrillization
(Schneider et al. 1999), and there is thus greater
consensus that the primary effect of tau hyper-
phosphorylation is to decrease MT binding
and increase the cytosolic tau concentration
(Ballatore et al. 2007b; Brunden et al. 2009).
In general, the extent to which posttranslational
phosphorylation contributes to the onset of tau
pathology in AD is still uncertain, as tau hyper-
phosphorylation is also observed in FTDP-17,
in which tau mutations are presumably respon-
sible for the development of pathology.

Tau can also be modified through the addi-
tion of b-N-acetylglucosamine (O-GlcNac) at
certain ser and thr phosphorylation sites, and
there is evidence that increased O-GlcNac
modification of tau results in a corresponding
decrease in phosphorylation (Lefebvre et al.
2003; Liu et al. 2004). Tau can also undergo

Tau-Directed Drug Discovery Strategies
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tyrosine phosphorylation (Lee et al. 2004),
sumoylation, and nitration (Gong et al. 2005;
Reynolds et al. 2006), although the consequen-
ces of these modifications are presently unclear.
Finally, it has recently been shown that tau can
undergo acetylation on multiple lysines (Min
et al. 2010; Cohen et al. 2011), including lysine
residues (K280/K281) within a MT binding
repeat. The acetylation of tau at K280, much
like phosphorylation at certain tau residues,
impairs the ability of tau to bind MTs and
increases its propensity to fibrillize (Cohen
et al. 2011). Importantly, tau within NFTs are
found to be acetylated at K280 in PSP, CBD,
and other tau diseases with inclusions formed
by 4-R tau, or in AD in which NFTs contain a
mixture of 4-R and 3-R tau. Similarly, NFT-like
inclusions within Tg mouse models of tauop-
athy are acetylated at K280. As discussed further
below, this suggests that a new therapeutic strat-
egy for AD and related tauopathies might be the
inhibition of tau acetylation.

TAU AS A DRUG TARGET

The aforementioned studies have provided im-
portant information about how tau mutations
and posttranslational modification can affect

its microtubule binding and assembly into
multimeric structures. These findings suggest
potential therapeutic strategies to reduce the
untoward effects of altered tau in neurode-
generative disease, and these approaches are
generally directed to overcoming tau loss-of-
function or reducing levels of potentially toxic
tau species (Fig. 2). More specifically, there are
ongoing research programs within academia
and/or industry that are aimed at identifying
prototype drug candidates, which will:

† Compensate for a loss of tau stabilization of
MTs, given the importance of MTs in axonal
transport and proper neuronal function.

† Attenuate tau hyperphosphorylation through
the inhibition of key tau kinases, thereby re-
storing tau interaction with MTs and perhaps
reducing tau aggregation.

† Prevent tau–tau interactions and resulting
multimerization, thus mitigating the forma-
tion of potentially neurotoxic tau species.

† Increase degradation of misfolded or other-
wise pathologically altered tau through an
enhancement of cellular catabolic pathways,
again with the objective of reducing the levels
of toxic forms of tau.

↑Autophagy

Tau assemby inhibitors
Microtubule stabilizers Anti-Tau

Ab
HSP90 inhibitors

Ac P

P
P

P Ac
↓Phospho/Acetyl-Tau

Nucleus

Figure 2. Possible tau-based therapeutic strategies in Alzheimer disease. A loss of tau function might be over-
come with microtubule-stabilizing agents or inhibitors of tau hyperphosphorylation and/or acetylation. Poten-
tially toxic tau oligomers or fibrils might be prevented by inhibitors of tau multimeric assembly. Inhibition of
HSP90 and the resulting elevation of the chaperones HSP70/HSP40 may increase proteasomal degradation of
hyperphosphorylated tau. Misfolded tau multimers might be cleared through enhancement of macroauto-
phagy. Finally, misfolded tau species may be released from cells and internalized by nearby neurons, thereby
“seeding” the formation of pathological tau in the recipient cell. If confirmed, this spreading of tau pathology
might be inhibited by antibodies that bind misfolded tau in the brain interstitial fluid.
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In addition to the above, there is new emerg-
ing evidence that tau pathology may spread in
the brain through the release of tau species
into the interstitial fluid that can be internalized
by nearby neurons, thereby acting as “seeds” to
foster the formation of additional pathologic
tau (Clavaguera et al. 2009). Further validation
of this mechanism of tau transmission would
suggest additional therapeutic approaches, in-
cluding passive immunotherapy strategies
whereby tau-directed antibodies might prevent
the spread of pathologic tau. In the following
sections, we will discuss in detail these various
tau-directed strategies for the treatment of AD
and related pathologies, including the chal-
lenges associated with each approach.

COMPENSATION FOR TAU
LOSS-OF-FUNCTION

As noted, a possible cause of the neurodegener-
ation observed in tauopathies is a loss of tau
function with resulting MT destabilization.
Support for this hypothesis is provided by the
observed decrease within the AD brain of the
stabilized MT marker, acetyl-tubulin (Hempen
and Brion 1996). Likewise, pyramidal neurons
in the AD brain have been reported to have
reduced MT density (Cash et al. 2003). Finally,
Tg mice that overexpress 3-R tau display an age-
dependent formation of intraneuronal tau
inclusions in the brainstem, spinal cord, and
cortex that is accompanied by a reduction of
MT density and deficiencies in fast axonal trans-
port (Ishihara et al. 1999).

These data suggest that compensation for
tau loss-of-function with MT-stabilizing drugs
might be a therapeutic strategy for the treat-
ment of AD and related tauopathies. Drugs of
this type have been employed for some time in
the treatment of cancer, as molecules such as
paclitaxel and docetaxol (Saloustros et al.
2008) inhibit cancer cell division through alter-
ation of the mitotic spindle. However, the potent
antimitotic properties of these drugs come at
the cost of severe side effects, including neu-
tropenia and peripheral neuropathies (Bedard
et al. 2010). Thus, it is unlikely that these che-
motherapeutic agents could be used safely in

AD and other tauopathies using current cancer
dosing regimens, as long-term dosing would
likely be required in these neurodegenerative
disorders. However, a complete loss of tau func-
tion is unlikely in tauopathies, and thus it may
be possible to use doses of MT-stabilizing drugs
that are lower than those currently employed in
cancer chemotherapy to compensate for loss of
tau activity. In fact, important proof-of-princi-
ple data have been obtained, which suggest that
relatively low doses of a MT-stabilizing com-
pound can improve neuronal deficits that result
from tau misfolding. Utilizing the T44 tau Tg
mouse model, which shows motor neuron MT
deficits and functional impairments (Ishihara
et al. 1999), Zhang et al. (2005) showed that
weekly administration of 10 or 25 mg/m2 of a
paclitaxel formulation for a total of 12 weeks
resulted in marked improvements in MT den-
sity, fast axonal transport, and motor perform-
ance. Furthermore, the drug-treated animals
did not show any discernible signs of associated
toxicities or side effects. The paclitaxel doses
used in this study were much lower than the
typical human doses of 135–175 mg/m2, and
thus provide hope that small molecule MT-
stabilizing compounds can be used safely for
the treatment of tauopathies.

Although these data provided important
validation of the concept of compensating for
tau loss-of-function, it is unlikely that paclitaxel
will be suitable for the treatment of CNS dis-
orders. The taxanes, including paclitaxel and
docetaxel, have poor BBB permeability that is
thought to result, at least in part, from these
molecules being substrates for the P-glycopro-
tein (Pgp) transporter that prevents xenobiotics
from accumulating in the brain (Sparreboom
et al. 1997; Fellner et al. 2002). Improved tax-
anes have been synthesized that are not Pgp sub-
strates (Cisternino et al. 2003; Ballatore et al.
2007a; Ojima et al. 2008; Metzger-Filho et al.
2009), but recent data from our laboratory sug-
gest that such compounds still have poor brain
penetration (Brunden et al. 2011). However,
several examples from the epothilone class of
MT-stabilizing compounds, some of which
have progressed to clinical testing for cancer
(Altmann 2005; Beer et al. 2007; Denduluri
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et al. 2007), partition readily across the BBB
and one of these molecules, epothilone D, has
a long-lasting pharmacodynamic effect in the
brain (Brunden et al. 2011). Treatment of Tg
mice that express mutant human tau, and which
develop NFT-like tau pathology, with low doses
of epothilone D resulted in an improvement
of CNS MT density, a reduction of axonal dys-
trophy, and an improvement of cognitive per-
formance relative to vehicle-treated littermates
(Brunden et al. 2010b). Importantly, no side
effects were noted in the epothilone D-treated
mice in this proof-of-concept prevention study
in tau Tg mice, including an absence of neutro-
penia or signs of peripheral neuropathy. These
data suggest that a brain-penetrant MT-stabiliz-
ing agent such as epothilone D might be suit-
able for clinical evaluation in patients with AD
or a related tauopathy.

A potential alternative to brain-penetrant
small molecule MT-stabilizing drugs such as
the epothilones is the octapeptide, NAP. This
peptide is believed to interact with neuron-
specific bIII-tubulin (Divinski et al. 2006;
Matsuoka et al. 2007), and intranasal adminis-
tration of NAP to Tg mice that develop both
Ab and tau pathology resulted in a reduction
of hyperphosphorylated tau and diminution
of Ab peptide levels. Similarly, a recent study
showed that intranasal dosing of NAP to Tg
mice expressing mutated tau also led to a reduc-
tion of tau phosphorylation (Shiryaev et al.
2009). Although the mechanism(s) by which
NAP stabilization of MTs leads to a decrease
of tau phosphorylation and Ab levels is unclear,
these data nonetheless provide additional sup-
port for a therapeutic strategy of compensating
for tau loss-of-function in AD. NAP (davune-
tide) has progressed to clinical testing, with a
Phase IIa trial recently completed in AD patients
(see http://www.allontherapeutics.com) and
pivotal clinical trials underway.

Although the improvement in MT density
observed in tau Tg mice on treatment with
MT-stabilizing molecules suggests a compensa-
tion for tau loss-of-function, it is possible that
these agents improve neuronal health through
additional complementary mechanisms. For
example, it has recently been shown that MT

stabilization with paclitaxel enhances regenera-
tion after spinal cord injury in rats (Hellal et al.
2011). Injured CNS axons appear to have a col-
lapse of MT integrity that results in the forma-
tion of retraction bulbs, and an enhancement of
MT stabilization in such cells promotes axon
regeneration (Erturk et al. 2007). Thus, it is
possible that MT-stabilizing agents such as epo-
thilone D attenuate axonal retraction/damage
that arises from tau-mediated toxicity in tau
Tg mouse models. MT-stabilizing compounds
might also affect axonal transport by increasing
the engagement of motor proteins with MTs. It
is known that tau binding to MTs can have an
inhibitory effect on kinesin-mediated antero-
grade axonal transport in cell culture systems
in which tau is overexpressed (Stamer et al.
2002; Vershinin et al. 2007; Dixit et al. 2008),
although this has not been shown in vivo.
Because paclitaxel binding to tubulin has been
shown to reduce the amount of tau incorpo-
rated into MTs (Kar et al. 2003), it is conceivable
that paclitaxel and other MT-stabilizing agents,
which share the paclitaxel binding site (such as
the epothilones), reduce tau binding to MTs,
thereby allowing greater kinesin engagement
with MTs and improving anterograde axonal
transport. However, this possibility has not yet
been investigated in tau Tg mouse models.

INHIBITION OF TAU PHOSPHORYLATION

Another possible strategy to improve MT stabi-
lization in AD and other tauopathies is to
prevent the phosphorylation that reduces tau
interaction with MTs (Alonso et al. 1994,
1996; Wagner et al. 1996; Merrick et al. 1997).
Decreasing tau phosphorylation might also
reduce levels of unbound tau that are available
for the formation of potentially toxic oligo-
meric and fibrillar structures (Alonso et al.
1996; Necula and Kuret 2004). A therapeutic
strategy based on inhibition of tau phosphory-
lation has practical appeal because protein ki-
nases provide a proven, if extremely difficult,
class of drug targets with which the pharma-
ceutical industry has considerable experience.

Although normal tau is phosphorylated
at multiple sites, the extent of phosphorylation
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at these sites is relatively low. However, in AD
brain tau phosphorylation is increased three-
to fourfold (Ksiezak-Reding et al. 1992; Kopke
et al. 1993; Matsuo et al. 1994), mostly through
increased levels of phosphorylation on the tau
that is incorporated into neurofibrillary inclu-
sions. There are �25 ser and thr residues within
tau that appear to be sites of enhanced phos-
phorylation in AD (Morishima-Kawashima
et al. 1995; Hanger et al. 1998), and these are
found primarily in the proline-rich domain
and the carboxy-terminal region (see Fig. 1),
although a few sites also reside within the
MT-binding domains (Hanger et al. 2009). A
number of candidate kinases have been pro-
posed to play a role in the posttranslational
phosphorylation of tau (Mazanetz and Fischer
2007; Gong and Iqbal 2008; Hanger et al.
2009). Among these are kinases that modify
ser/thr residues that precede a proline residue,
including glycogen synthase kinase 3 (GSK-3)
a and b, cyclin-dependent kinase 5 (CDK5),
and mitogen-activated kinase 1 (MAPK1). In
addition, nonproline directed kinases such as
protein kinase A, p38 and microtubule-affinity
regulated kinases (MARK1–4) (Drewes et al.
1997) have been implicated in tau phosphor-
ylation. Of these various kinases, the existing
data arguably support GSK-3b and CDK5 as
being the best-validated tau kinase targets,
and these enzymes will be the focus of further
discussion here.

GSK-3 a and/or b, or more simply GSK-3
because available research tools generally do
not discriminate between these closely related
isoforms, colocalizes with NFT in the AD brain
(Yamaguchi et al. 1996; Imahori and Uchida
1997). Similarly, CDK5 is also found in NFTs
(Yamaguchi et al. 1996; Pei et al. 1998; Augusti-
nack et al. 2002). CDK5 requires a regulatory
subunit for activity and interacts with p35 and
p39, or with their more stable proteolytic prod-
ucts, p25, and p29, respectively. Overexpression
of p25 in Tg mice has been reported to result in
tau hyperphosphorylation (Ahlijanian et al.
2000; Noble et al. 2003). Similarly, Tg mice
expressing GSK-3b display increased tau phos-
phorylation, as well as learning and memory
deficits (Spittaels et al. 2000; Lucas et al. 2001;

Hernandez et al. 2002). Interestingly, there is
recent evidence of coordinated regulation of
GSK-3 and CDK5, as mice that overexpress the
p25 regulatory subunit of CDK5 have decreased
GSK-3 activity that has been attributed to
phosphorylation of an inhibitory ser9 residue
on GSK-3 (Wen et al. 2008). Moreover, inhibi-
tion of CDK5 resulted in an increase of tau
phosphorylation by GSK-3 (Wen et al. 2008).
Nonetheless, there are ongoing efforts by a
number of industry and academic laboratories
to identify inhibitors of both CDK5 and GSK-3.

In the case of GSK-3, these drug discovery
activities have been further spurred by the
observation that GSK-3 activity may affect Ab
production (Aplin et al. 1997; Phiel et al.
2003; Rockenstein et al. 2007) and by studies
in tau Tg mice in which prototype inhibitors
of GSK-3 have been reported to result in a
diminution of both tau phosphorylation and
intracellular tau inclusions. For example, daily
administration of the GSK-3 inhibitor LiCl for
30 days to JNPL3 tau Tg mice, which overex-
press P301L 4R-tau, resulted in the inhibition
of GSK-3 activity, reductions of both phospho-
tau and insoluble tau, and lessening of axonal
degeneration (Noble et al. 2005). These authors
also showed a similar effect on tau phosphory-
lation and insolubility using a somewhat selec-
tive small molecule GSK-3 inhibitor (Noble
et al. 2005). Treatment of another Tg mouse
line, which expresses tau harboring three mis-
sense mutations, with LiCl also resulted in a
decrement of both tau phosphorylation and
tau intracellular inclusions (Perez et al. 2003).
Furthermore, treatment of young Tg mice that
express 3R-tau with LiCl for 4 months resulted
in a reduction of insoluble tau, although some-
what surprisingly there was not an apparent
reduction of the assessed phospho-tau epitopes
(Nakashima et al. 2005). Finally, a relatively
nonspecific but brain-penetrant kinase inhibi-
tor was shown to decrease total levels of hyper-
phosphorylated tau (migrating at 64kDa) and
improve motor function in JNPL3 tau Tg
mice, albeit without a reduction of NFTs,
thereby suggesting that smaller tau assemblies
might have caused neuronal dysfunction (Le
Corre et al. 2006).
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The various medicinal chemistry ap-
proaches that have been employed to develop
tau kinase inhibitors have been reviewed else-
where (Churcher 2006; Mazanetz and Fischer
2007). However, it is worth considering here
the challenges associated with this therapeutic
strategy. As noted above, a number of candidate
kinases have been proposed to phosphorylate
tau. However, it is still unclear which of these
are important in AD or even whether the major-
ity of the hyperphosphorylation occurs before
or after initial tau assembly. It is possible and
perhaps likely that multiple kinases act on tau
in the brain, and thus selective inhibition of a
single kinase may not prevent the detrimental
effects associated with tau hyperphosphory-
lation. In this regard, it is difficult to develop
exquisitely selective kinase inhibitors because
most compounds are directed to the ATP-
binding site that is common to all kinases.
Although a nonselective ser/thr kinase inhibi-
tor may have some advantages in AD because
of the likely involvement of more than one ki-
nase in tau hyperphosphorylation, a lack
of selectivity could also lead to an increased
likelihood of side effects. Finally, even highly
selective inhibition of individual tau kinases
implicated in AD may prove problematic, as
these enzymes are known to modify other crit-
ical cellular proteins. Such “on-target” dose
limiting toxicity is known to impact drug devel-
opment for GSK-3, which plays an important
role in the regulation of glycogen metabolism,
cell proliferation, and oncogenesis (Rayasam
et al. 2009). Likewise, CDK5 has been suggested
to regulate axonal and synaptic function (Dha-
van and Tsai 2001).

An alternative approach to decreasing tau
hyperphosphorylation would be to increase
phosphate removal. The dephosphorylation of
tau appears to result primarily from the action
of protein phosphatase 2A (PP2A) (Matsuo
et al. 1994), and there is evidence that this en-
zyme is compromised in AD brain (Gong et al.
1995). One potential strategy to increase PP2A-
mediated dephosphorylation of tau would be
to decrease the binding of one or both of the
inhibitory proteins that regulate PPA2 activity
(Tanimukai et al. 2009).

Another possible alternative strategy to
regulating tau phosphorylation has emerged
that does not entail kinase inhibition. Tau is
also modified through the addition of b-N-ace-
tylglucosamine at ser/thr residues (O-GlcNAc),
and there is evidence of an inverse relation-
ship between the extent of O-GlcNAc modifica-
tion and the degree of tau phosphorylation
(Lefebvre et al. 2003; Liu et al. 2004). The O-
GlcNAc modification can be reversed by O-
GlcNAcase, and a prototype inhibitor of this
enzyme caused a decrease of tau phosphoryla-
tion in normal rats (Yuzwa et al. 2008). These
data suggest that inhibition of O-GlcNAcase
may be a potential therapeutic approach for
AD and other tauopathies, although many pro-
teins undergo O-GlcNAc addition and there
may therefore be as yet undefined detrimental
consequences of sustained inhibition of O-
GlcNAcase.

Finally, very recent data indicate that an-
other tau posttranslational modification, acet-
ylation, may impart changes that resemble
those observed after phosphorylation (Min
et al. 2010; Cohen et al. 2011). In particular,
acetylation of lysine residues 280 within a MT
binding repeat of tau decreases its ability to
induce MT assembly and increases its pro-
pensity to fibrillize (Cohen et al. 2011). Tau ace-
tylation has also been suggested to decrease
proteasome-mediated degradation of phos-
phorylated tau (Min et al. 2010). Accordingly,
inhibition of tau acetylation in AD and related
4-R tauopathies could increase tau binding to
MTs, reduce tau aggregation, and enhance
catabolism of phospho-tau species. The most
straightforward approach to attenuating tau
acetylation would be inhibition of the ap-
propriate acetyl-transferase(s). However, these
enzymes, like protein kinases, have multiple cel-
lular substrates. For example, the p300/CBP
acetyl-transferase implicated in tau acetylation
(Min et al. 2010; Cohen et al. 2011) has more
than 75 described protein substrates (Yang and
Seto 2008; Bowers et al. 2010). Thus, it is un-
clear whether drugs can be developed that will
decrease tau acetylation specifically without
affecting other substrates that could induce
side effects.
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ENHANCEMENT OF TAU DEGRADATION

The hypothesis that tau oligomers or fibrils are
harmful suggests that increased catabolism of
pathological tau would be beneficial. Cells are
equipped to degrade misfolded proteins by
two general mechanisms; via the ubiquitin-
proteasome system (UPS) and through autoph-
agy (Fig. 2). In the former, proteins that are
destined for catabolism are modified on lysine
residues through the addition of ubiquitin
molecules, with subsequent degradation by
the proteasome. Because proteins must gain
entry into a “pore” within the proteasome com-
plex to undergo proteolysis, it is unlikely that
large oligomeric tau species can be acted on
by proteasomes. However, although normal
tau is not believed to be degraded by the UPS,
this pathway has been implicated in the turn-
over of phosphorylated tau. The “carboxy ter-
minus of HSP70-interacting protein” (CHIP)
appears to regulate tau ubiquitination (Petru-
celli et al. 2004; Shimura et al. 2004) and
CHIP knockout mice display an accumulation
of phospho-tau (Dickey et al. 2006b). CHIP
can form a complex with the molecular chaper-
one HSP70 and target proteins to the protea-
some, and increased HSP70 expression in cell
culture models leads to a decrease in insoluble
phospho-tau and an increase of soluble tau
(Dou et al. 2003; Petrucelli et al. 2004). HSP90
is another molecular chaperone that assists in
protein refolding, and inhibition of the ATPase
function of HSP90 with compounds such as
geldanamycin results in an increased expression
of HSP70 and HSP40 (Zhang and Burrows
2004). HSP90 inhibition in cell culture leads
to an increased degradation of phospho-tau
(Dickey et al. 2006a) that appears to result from
a change of HSP90 chaperone function such
that phospho-tau is targeted to the CHIP/
HSP70 complex, in which it is polyubiquinated
and degraded by the proteasome (Dickey et al.
2007). Importantly, HSP90 inhibitors have been
shown to reduce the amount of hyperphos-
phorylated tau in Tg mouse models. Both acute
and subchronic dosing of JNPL3 tau Tg mice
with the brain-penetrant HSP90 inhibitor PU-
DZ8 led to a reduction of both soluble and

hyperphosphorylated insoluble tau (Luo et al.
2007). Interestingly, PU-DZ8 treatment also
caused a reduction of p35, the cofactor required
for CDK5 activity. Thus, HSP90 inhibition may
affect phosphorylated tau levels both through
increased proteasomal degradation of tau and
reduced CDK5-mediated tau phosphorylation.
In another study, a 7-day administration of
the HSP90 inhibitor EC102 to Tg mice that
express all six isoforms of normal human tau
and which develop tau inclusions, resulted in
a reduction of phospho-tau species (Dickey
et al. 2007).

As with all therapeutic strategies, the possi-
ble benefits of HSP90 inhibition will have to be
weighed against potential safety risks. A priori,
it would seem that prolonged HSP90 inhibition
would be problematic, as this will lead to the
degradation of other Hsp90 client proteins in
addition to tau. Moreover, genetic knockout
of HSP90 in mice is lethal. However, there
appears to be some selectivity of HSP90 inhib-
itors for HSP90 found within cancer cells as
opposed to normal cells (Solit and Chiosis
2008; Mahalingam et al. 2009). Although the
reason for this selectivity is not fully under-
stood, several hypotheses have been proposed
(Chiosis and Neckers 2006; Solit and Chiosis
2008). These include the possibility of a pref-
erential binding of inhibitors to HSP90 that
is bound to multimeric chaperone complexes
that are elevated in cancer cells (Kamal et al.
2003), or that HSP90 levels may be limiting in
cancer cells because of an increased burden of
misfolded proteins. Regardless of the explana-
tion, it remains to be shown whether neurons
harboring excessive hyperphosphorylated tau
are also selectively affected by HSP90 inhibitors,
although it appears that HSP90 inhibitors bind
to cortical homogenates from AD brain with
greater affinity than to those from control brain
(Dickey et al. 2007).

As noted, misfolded and/or hyperphos-
phorylated tau that assembles into larger olig-
omers or fibrils is unlikely to be degraded by
the UPS because of their exclusion from the
proteasome pore. However, there is evidence
that larger protein aggregates, including tau
multimers, can be cleared through autophagy.
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Multiple forms of autophagy have been de-
scribed (Nixon 2006; Williams et al. 2006),
but the degradation of large protein aggregates
and defective cellular organelles is believed to
occur via macroautophagy, whereby an auto-
phagasome encapsulates the material to be
degraded and subsequently fuses with a lyso-
some. Macroautophagy can be induced with
the drug rapamycin, and treatment of flies
expressing wild-type or mutant human tau
with rapamycin led to a diminution of insoluble
tau (Berger et al. 2006). Conversely, perturba-
tion of lysosome function or inhibition of
autophagy in neuroblastoma cells expressing
human tau resulted in slower tau clearance
(Hamano et al. 2008). More recent work has
implicated the autophagy-lysosomal system in
tau fragmentation and the clearance of tau
aggregates (Wang et al. 2009). Thus, although
there are still relatively few reports on the role
of autophagy in the degradation of misfolded
tau, it is possible that up-regulation of this cel-
lular process might be beneficial in reducing
pathological tau species. However, it is not
entirely clear that an induction of autophagy
will be beneficial in AD and other tauopathies,
as it has been suggested that the autophagic def-
icits, which have been observed in AD brain
result from impaired clearance of autophagic
vesicles and not faulty initiation of autophagy
(Boland et al. 2008).

If an up-regulation of autophagy is found
to be an appropriate strategy for AD, it should
be noted that the most characterized inducer
of autophagy, rapamycin, alters the mTOR
signaling pathway and has a variety of other
biological effects, including immunosuppres-
sion (Delgoffe and Powell 2009). Moreover,
there is evidence that rapamycin suppresses
tau translation, which appears to be regulated
by the mTOR effector 70-kDA ribosomal pro-
tein S6 kinase (Morita and Sobue 2009). Thus,
although chronic treatment of WT mice with
rapamycin extended their lifespan and reduced
aging related diseases (Harrison et al. 2009;
Miller et al. 2011), the potential complications
of prolonged alteration of the mTOR signal
transduction suggest that alternative autophagy
enhancers will be required for the treatment of

neurodegenerative disease. In this regard, LiCl
has been suggested to induce autophagy through
its inhibition of inositol monophosphatase
(Sarkar et al. 2005) and, in fact, it is possible
that the reduction in phosphorylated tau levels
(Noble et al. 2005) and the reduction of tau
lesions (Nakashima et al. 2005) observed on
LiCl treatment discussed above were due both
to effects both on GSK3 and autophagy.

In addition to up-regulating intracellular
tau degradation, another potential approach
to lowering misfolded tau in AD brain is via
active or passive immunization (Fig. 2). A sim-
ilar strategy is presently being pursued to lower
senile plaque burden, as several active and
passive Ab immunization clinical trials have
been completed or are ongoing (Orgogozo et al.
2003; Rinne et al. 2010; Wilcock 2010). Multiple
hypotheses have been proposed to explain how
Ab antibodies could lead to plaque reductions.
For example, it is possible that a low level of
Ab antibody enters the brain and binds to
plaques, thereby invoking complement-medi-
ated microglial clearance. Alternatively, a peri-
pheral sink mechanism may exist whereby the
formation of Ab-antibody complexes in blood
lowers free Ab levels, altering the brain-blood
Ab equilibrium such that Ab moves from the
brain into the blood.

Regardless of how Ab antibodies might
reduce plaques, these data beg the question of
whether tau immunization might reduce mis-
folded tau in the AD brain. It is important to
point out that, unlike senile plaques, NFTs
and tau neuropil threads are generally intracel-
lular. Thus, tau inclusions would not likely be
accessible at sufficient levels to extracellular
antibody that enters the brain parenchyma
from blood. Although these fundamental con-
cerns suggest that tau immunization may not
be a practical therapeutic approach for AD,
recent data provide reason for cautious opti-
mism. In particular, an interesting and pro-
vocative study (Clavaguera et al. 2009) showed
that injection of brain-derived pathological tau
from one tau Tg mouse line into the brains of
another tau Tg mouse line that does not nor-
mally form intraneuronal inclusions led to the
formation of pathological tau deposits in the
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recipient mice. These results suggest that mis-
folded tau that is released into the brain inter-
stitial fluid, perhaps from injured or dying
neurons, might be internalized by nearby cells
to “seed” further tau misfolding and accumula-
tion. This hypothesis is further bolstered by
studies, which indicate that aggregated tau
can be transferred between cells in culture
(Frost et al. 2009). If further confirmed, this
mechanism of tau transmission may provide
an explanation for the observed stereotypical
spreading of tau pathology in AD (Braak et al.
1993), and suggests that an antitau antibody
which recognizes the “seeding” tau species might
prevent the transmission and further progres-
sion of tau pathology. In this regard, there has
been a report of tau immunotherapy in which
JNPL3 tau Tg mice were vaccinated with a
phospho-tau peptide (Asuni et al. 2007). Anti-
antigen antibodies were generated by the mice,
and there was a reduction of pathological tau
as assessed by immunohistochemistry. Wheth-
er this amelioration of tau pathology resulted
from a slowing of tau transmission or through
another mechanism is unknown, but additional
studies of tau immunization in Tg models of AD
are warranted. However, it should be noted that
vaccination of wild-type mice with recombinant
human tau led to the induction of NFT-like
structures, axonal damage, and gliosis (Rosen-
mann et al. 2006). Thus, certain tau immuno-
gens may be detrimental and perhaps a passive
immunization approach using antibodies di-
rected to the misfolded tau species responsible
for cell-to-cell transmission would have fewer
side effects.

Finally, it should be noted that another ther-
apeutic strategy that has recently been suggested
for AD is to lower overall tau levels (i.e., not just
hyperphosphorylated or misfolded tau). Initial
support for this concept was provided by data
demonstrating that hAPP (PDAPP) Tg mice,
which develop Ab plaques like those seen in
AD, show reduced behavioral deficits when
endogenous tau levels were lowered by crossing
the hAPP mice with tau2/2 mice (Roberson
et al. 2007). This behavioral improvement was
not caused by changes in Ab or senile plaque
levels in the hAPP/tau2/2 mice relative to

hAPP/tauþ/þ counterparts. Interestingly, the
reduction of tau also led to greater resistance
to excitotoxic insults (Roberson et al. 2007).
This observation may relate to recent data indi-
cating that tau has a dendritic function in the
postsynaptic targeting of the kinase Fyn (Ittner
et al. 2010). Fyn-mediated phosphorylation of
the NR2b subunit of the NMDA receptor
strengthens its interaction with the postsynaptic
protein, PSD95. Tau-deficient mice were shown
to have reduced susceptibility to excitotoxic sei-
zures because of impaired NMDA-PSD95 inter-
action (Ittner et al. 2010). Moreover, hAPP
(APP23)/tau2/2 mice showed improved cog-
nitive performance relative to tau-expressing
hAPP controls, presumably because of a reduc-
tion of Ab-mediated excitotoxicity that was
thought to be dependent on the presence of
tau (Ittner et al. 2010).

Although these data suggest that there may
be value in lowering total tau levels in AD, this
perspective is not universally embraced, and
caution should be exercised in the interpreta-
tion of these results. First, there is another recent
report, which suggests that a loss of tau is detri-
mental and enhances degeneration in a another
hAPP (Asw) Tg mouse model (Dawson et al.
2010). In addition, the absence of a profound
phenotype in tau2/2 and hAPP/ tau2/2 mice
might suggest that a loss of tau is well tolerated
and does not greatly affect MT function. How-
ever, these mice do develop some neurologi-
cal impairments with age, including cognitive
and motor deficits (Harada et al. 1994; Ikegami
et al. 2000). In addition, there may well be com-
pensatory changes during development that
offset the loss of tau in these knockout mice.
In this regard, it has been reported that
tau2/2 have increased expression of MAP1a
(Harada et al. 1994). Although a therapeutic
strategy based on the lowering of total tau levels
merits further study, a “Goldilocks-like” bal-
ance may be needed whereby tau concentrations
are decreased enough to reduce Fyn targeting to
dendrites but not so much as to compromise
tau-mediated MT stabilization. In this regard,
the combination of a tau-lowering agent and a
MT-stabilizing compound might address both
Ab- and tau-mediated toxicities in AD.
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INHIBITION OF TAU FIBRILLIZATION

The hypothesis that tau fibril formation may
be spread by the internalization of misfolded
extracellular tau seeds will require further study.
However, it is generally accepted that tau fibrils
are formed from a nucleation-elongation proc-
ess in which a misfolded tau nucleating struc-
ture is formed that then promotes the further
assembly of normal tau protein into oligomers
and ultimately fibrils (Margittai and Langen
2004; Congdon et al. 2008). Thus, one concep-
tually straightforward strategy to prevent the
formation of potentially harmful tau oligomers
and/or fibrils would be to identify molecules
that block the formation of tau nucleating
structures and/or the elongation of nascent
protofibrils (Fig. 3). Although simple in theory,
this therapeutic approach is challenging from
a drug development perspective because of the
difficulty of disrupting protein–protein inter-
actions that involve large surface areas. The
search for inhibitors of tau assembly has been
greatly aided by the discovery that bona fide
fibrils with verisimilitude to those found in
AD brain can be formed in vitro from isolated
recombinant tau (Wille et al. 1992), with this
assembly facilitated significantly by coincuba-
tion with anionic cofactors such as heparin or
arachidonic acid (Goedert et al. 1996; Wilson
and Binder 1997). This has led to efforts in sev-
eral laboratories to identify inhibitors of tau

fibril formation, and a number of molecules
with differing chemical scaffolds have been de-
scribed and discussed in several recent reviews
(Brunden et al. 2009, 2010a; Ballatore et al.
2010b; Bulic et al. 2010). The chemical or bio-
logical properties of many of these compounds
may preclude their use in animals or humans,
although some may have potential for further
development.

Interestingly, one of the first described tau
fibrillization inhibitors has progressed to clin-
ical testing in AD patients. Methylene blue
was shown to block tau–tau interactions and
alter tau fibril structure in 1996 (Wischik et al.
1996), and a Phase II AD clinical trial has re-
cently been completed with this compound
(trade name of RemberTM) (Staff et al. 2008).
The clinical data suggest that the drug-treat-
ment group had reduced cognitive decline
relative to the placebo group, although interpre-
tation of the data was complicated by problems
with the formulation of the highest dose group
that led to lower than expected exposures of the
drug. These preliminary clinical data are en-
couraging, and further confirmation of efficacy
in a pivotal Phase III trial could provide impor-
tant validation of the use of tau fibrillization
inhibitors for the treatment of AD. It should
be noted that methylene blue is known to be a
highly promiscuous molecule that can affect
multiple protein targets (Gillman 2010; Oz
et al. 2010). Therefore, effects in AD patients,

Elongation

Nucleating structures
(Dimers and/or oligomers)

Tau fibrils

Misfolding
& assembly

Tau monomers

Figure 3. The assembly of tau into multimers and fibrils. Tau is normally unstructured in solution, and in axons
the majority of tau is typically associated with MTs. In AD, tau can become misfolded and assemble into multi-
meric structures. Certain of these multimers can serve as nucleating structures to which additional tau can be
added to yield classical amyloid-type fibrils.
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even if confirmed in a Phase III study, may
not be solely attributable to prevention of tau
fibrillization.

To our knowledge, no other inhibitors of
tau fibril assembly have progressed to efficacy
testing in animal models of AD or tauopathy.
Several inhibitors of tau fibrillization have
been shown to inhibit tau inclusion formation
in a cell-based model (Pickhardt et al. 2005,
2007; Khlistunova et al. 2006; Bulic et al.
2007), and one or more of these compounds
may be suitable for testing in animals if they
have appropriate pharmacokinetic properties
and can cross the BBB. In this regard, example
molecules from the aminothienopyridazine
(ATPZ) class of tau fibrillization inhibitors
have been identified that are absorbed orally
in mice and which show good plasma half-lives
along with equilibration across the BBB (Balla-
tore et al. 2010a). Thus, it is likely that one or
more novel tau fibrillization inhibitors will be
examined in a mouse model of tauopathy in
the near future.

In most reports, the concentrations of
compound required to inhibit tau fibrillization
were nearly equimolar to the tau concentration
used in the in vitro assays (Brunden et al. 2009,
2010a). This suggests that most of the described
tau fibrillization inhibitors either have a rela-
tively low affinity for tau, or that they form
complexes with misfolded monomers or small
multimers of tau to prevent fibrillization. It
will therefore be important to show that the
fibrillization inhibitors do not alter normal
tau function. For example, the ATPZ class of
tau fibril assembly inhibitors do not appear to
affect the ability of tau to promote MTstabiliza-
tion (Crowe et al. 2009; Ballatore et al. 2010a).
A mechanism based on compound interaction
with monomeric tau also raises the issue of
whether sufficient brain drug levels can be
achieved to bind the majority of tau monomers
within neurons. In this regard, it has been esti-
mated that under normal circumstances .99%
of tau is bound to MTs (Congdon et al. 2008).
Although the amount of tau bound to MTs is
presumably reduced in tauopathies, even a
10-fold increase in free tau would still result in
a sub-mM concentration of tau monomers if a

total intraneuronal cytoplasmic tau level of
�1 mM is assumed (Drubin et al. 1985). Thus,
it should be feasible to attain effective brain
concentrations of brain-penetrant tau fibril in-
hibitors. Moreover, tau aggregation inhibitors
might also be expected to interfere with the
extracellular transmission of aggregated tau nu-
clei, if this mechanism of pathology spreading
plays a significant role, which would further
increase the likely efficacy of stoichiometric in-
hibitors at feasible exposure levels.

UNIQUE CHALLENGES OF TAU-DIRECTED
DRUG DISCOVERY AND DEVELOPMENT

Many of the complexities associated with tau-
directed drug discovery approaches were men-
tioned in the previous sections. However,
certain aspects of these challenges merit further
discussion, particularly as they compare to ther-
apeutic strategies focused on reducing Ab levels
in AD. As discussed in other articles within this
volume, there have been significant advances
in the development of inhibitors of the b- and
g-secretase enzymes that are responsible for
the release of Ab from APP. The pharmaceu-
tical industry has considerable experience in
developing enzyme inhibitors, and thus the
APP-processing secretases are viewed as highly
“druggable” targets. In contrast, the tau-based
strategies discussed here are not focused on
classical pharmaceutical drug targets, with the
debatable exceptions of the tau kinases and
HSP90. In fact, even the development of tau
kinase and HSP90 inhibitors is rendered more
difficult by the uncertainty of which kinase(s)
are responsible for tau hyperphosphorylation,
the challenges of developing kinase inhibitors
with sufficient selectivity and the very real pos-
sibility of on-target toxicity linked to the critical
functional role of the known tau kinases and
Hsp90. The totality of these challenges to tau
drug discovery has resulted in relatively modest
industry efforts in this research area to date,
although there are signs of increased interest
in tau-directed therapeutic approaches.

Because of the complexities of tau drug
discovery strategies, the academic community
has an important role to play in validating
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these therapeutic methods. This is particular-
ly true for the more unconventional pharma-
ceutical tactics, such as inhibition of tau
multimer assembly, increasing tau degradation
through up-regulation of autophagy, blocking
tau spread in the brain with antibodies, or com-
pensating for tau loss-of-function with MT sta-
bilizing compounds. In each of these cases, the
development of prototype reagents of sufficient
quality to test the hypothesis and subsequent
demonstration of proof-of-principle efficacy
in established Tg mouse models of tauopathy
will be critical to generating future industry
investment in these therapeutic strategies. It is
important that the design of these studies and
the Tg models used be considered carefully. Pre-
viously published tau-based drug studies in Tg
models have often suffered from underpowered
group sizes, as well as a lack of information on
drug exposure levels and target engagement.
Moreover, there is a clear need for agreement
on what constitutes robust efficacy endpoints
linked to tau pathogenesis and associated
neurodegeneration.

Although there are clear challenges to tau-
based drug discovery, there may also be ad-
vantages relative to Ab-targeted approaches.
Emerging data suggest that Ab deposition into
senile plaques could occur years before the
onset of cognitive deficits (Jack et al. 2010).
Thus, it is possible that a drug designed to
reduce Ab levels and senile plaques would
need to be administered well before the onset
of AD clinical symptoms to be effective in slow-
ing or preventing disease progression. Advance-
ments in PET/MRI brain imaging and other
biomarkers may eventually allow for the identi-
fication of nonsymptomatic individuals at risk
for AD. However, demonstration of efficacy
with an Ab-directed drug in such a population
may require multiple years of dosing unless a
highly validated surrogate marker is identified
and approved by regulatory agencies. In con-
trast, the development of tau inclusions appears
to be more proximal to the onset of memory
deficits (Jack et al. 2010). Thus, there may be a
greater chance of demonstrating efficacy with
a tau-directed agent in patients with MCI and
early AD than with an Ab-directed drug.

In conclusion, there are compelling reasons
to attempt to identify drug candidates that can
reduce the extent of tau-induced pathology in
AD and related tauopathies. Although this area
of drug discovery research is not as advanced as
that directed to reducing Ab and senile plaque
levels in AD there is growing interest in tau-
focused approaches as the central role of this
pathology in the disease becomes more widely
appreciated and the relevant research tools con-
tinue to improve.
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