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Summary
The growing burden of the rapidly ageing global population has
reinvigorated interest in the science of ageing and rejuvenation.
Among organ systems, rejuvenation of the central nervous
system (CNS) is arguably the most complex and challenging of
tasks owing, among other things, to its startling structural and
functional complexity and its restricted capacity for repair. Thus,
the prospect of meaningful rejuvenation of the CNS has seemed
an impossible goal; however, advances in stem cell science are
beginning to challenge this assumption. This Review outlines
these advances with a focus on ageing and rejuvenation of key
endogenous stem and progenitor cell compartments in the CNS.
Insights gleaned from studies of model organisms, chiefly
rodents, will be considered in parallel with human studies.
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Introduction: the burden of ageing and age-
related CNS disease

“But age, with his stealing steps, hath claw’d me in his clutch” 
Shakespeare, Hamlet, Act 5, Scene 1 (graveyard scene)

According to a recent report by the United Nations Population
Fund, the number of people in the world aged 60 or above is
projected to increase from 810 million in 2012 to a staggering 2
billion by 2050 (UNFPA Report, 2012). Ageing is a leading risk
factor for the major causes of chronic disease and disability, and
health care expenditure increases significantly with advancing age
(Meerding et al., 1998; Alemayehu and Warner, 2004).
Accordingly, there is a compelling socioeconomic imperative for
interventions to prevent or reverse age-related CNS disease. One
such approach centres on harnessing the regenerative potential of
endogenous stem cell populations to rejuvenate the ageing CNS.
This Review will provide an overview of the current state of
knowledge of stem cell ageing and the implications of ageing on
CNS rejuvenation. Interventions centred on the transplantation of
exogenous progenitor cells are beyond the scope of this work and
have been reviewed elsewhere (Marr et al., 2010; Dunnett and
Rosser, 2011).

CNS stem and progenitor cells: significant players
in CNS function?
The discovery that the adult mammalian CNS contains populations
of stem cells that contribute to CNS function took decades to gain
traction (Altman and Das, 1965; Altman, 1969; Kaplan and Hinds,

1977; Lois and Alvarez-Buylla, 1994; Kirschenbaum et al., 1994;
Eriksson et al., 1998). Neurogenic stem cells are principally
concentrated in two spatially and functionally distinct zones in the
human brain: the subventricular zone (SVZ), lining the walls of the
lateral ventricles; and the subgranular zone (SGZ) of the
hippocampal dentate gyri (Fig. 1). The cellular, architectural and
signalling milieus of these zones, or niches, are specialised to
support stem cell function (Marr et al., 2010), in contrast to the
relatively inhospitable microenvironment of the remainder of the
brain. A third population of progenitor cells, known as
oligodendrocyte progenitor cells (OPCs), are diffusely distributed
in the brain and spinal cord. OPCs are multipotent, giving rise
chiefly to myelinating oligodendrocytes, but also to Schwann cells,
astrocytes and possibly neurons (Box 1), but the question of
whether they constitute bone fide stem cells is a subject of ongoing
debate (Franklin and ffrench-Constant, 2008; Zawadzka et al.,
2010; Richardson et al., 2011). A fourth group of putative neural
progenitor cells are reportedly scattered throughout the CNS in
regions classically considered to be non-neurogenic (Palmer et al.,
1999; Arsenijevic et al., 2001; Richardson et al., 2006; Bennett et
al., 2009). Although it appears that these cells may have neurogenic
potential when cultured in vitro, it is not clear whether this capacity
is realised in vivo and it is uncertain how these cells differ, if at all,
from OPCs. As the functional relevance of these dispersed
progenitor cells in humans is unclear, they will not be discussed
further in this Review. The neurogenic potential of parenchymal
astrocytes in humans is also uncertain and has been reviewed
elsewhere (Robel et al., 2011). Key attributes of the SVZ and SGZ
stem cell and OPC populations and the contributions they make to
CNS function will be reviewed in brief below.

The subgranular zone of the hippocampal dentate gyrus
(SGZ)
The hippocampi reside in the medial temporal lobes of the human
brain where they constitute part of the limbic system and play
important roles in spatial learning and the consolidation of memory
as well as the regulation of emotions. The SGZ resides between the
granule cell layer and hilus of the hippocampal dentate gyrus and
is arguably the most important of the neurogenic zones in the adult
human CNS. Although the intricacies of SGZ neurogenesis
(reviewed by Kempermann et al., 2004; Ming and Song, 2011) are
beyond the scope of this Review, key steps in the process include
the asymmetric division of radial glia-like stem cells to yield
intermediate progenitor cells (alternatively named transient
amplifying progenitor cells), which migrate towards the granule
cell layer. Here, they undergo several rounds of division and
differentiation to yield a population of post-mitotic immature
granule cells that establish nascent network connections. A
minority of these neurons subsequently mature into terminally
differentiated excitatory granule cells. Several caveats to this
simplified scheme of hippocampal neurogenesis warrant
consideration [discussed in detail by Kempermann et al.
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(Kempermann et al., 2004)]: the process is continuous and thus the
population of dividing cells is heterogeneous; a large proportion of
cells die prior to maturation and integration into the neural
circuitry; levels of neurogenesis in the adult are orders of
magnitude lower than those during development (Ben Abdallah et
al., 2010; Kronenberg et al., 2006; Knoth et al., 2010); and the
extent of neurogenesis that occurs in the adult human hippocampus
is far lower than that in rodents, on which the majority of our
knowledge of the process is based (Eisch and Petrik, 2012).

Newborn neurons integrate into the hippocampal circuitry and
contribute to hippocampal function. They receive functional
afferent connections, spike in response to excitatory inputs and
release glutamate onto their post-synaptic neurons (Song et al.,
2002; Mongiat et al., 2009; Schmidt-Hieber et al., 2004; Faulkner
et al., 2008; Toni et al., 2008). Although the number of adult-born
neurons in the granule cell layer is dwarfed by those that form
during early development (Schlessinger et al., 1975; Altman and
Bayer, 1990), these cells are well equipped to make significant
functional contributions: they make synaptic connections prior to
attaining maturity and exhibit enhanced excitability, optimising
them for synaptic plasticity (Mongiat et al., 2009; Schmidt-Hieber
et al., 2004; Laplagne et al., 2006). Adult-born hippocampal
neurons exert modulatory effects on the established neural circuitry
and thus on brain function (reviewed by Deng et al., 2010; Ming
and Song, 2011).

The progeny of adult neurogenesis play numerous important roles
in learning and behaviour (reviewed by Deng et al., 2010; Kim et al.,

2012; Kempermann, 2012). Chief among these is pattern separation,
the capacity to differentially encode memories of similar events on
the basis of their precise temporal and spatial attributes (Clelland et
al., 2009; Nakashiba et al., 2012). This ‘time-stamping’ of memories
is central to accurate spatial and episodic memory (Kempermann,
2012). Hippocampal neurogenesis has been implicated in other
aspects of learning and memory (Kitamura et al., 2009; Kim et al.,
2012), including the long-term retention of spatial memory and
object recognition memory (Jessberger et al., 2009). Furthermore,
hippocampal neurogenesis plays a role in regulating emotions, and
impairments in the process are implicated in the pathogenesis of
depression and other affective disorders (reviewed by Small et al.,
2011; Eisch and Petrik, 2012; Fotuhi et al., 2012).

The subventricular zone (SVZ)
The subventricular zones line the walls of the lateral ventricles of
the brain and contain a population of stem cells with neurogenic
potential. The bulk of our understanding of this population of cells
is derived from rodent studies. In the rodent SVZ, radial glia-like
stem cells with morphological features similar to those in the SGZ
undergo asymmetric division to yield transient amplifying cells,
which in turn give rise to neuroblasts. Chains of neuroblasts
migrate in streams along a well-defined pathway to the olfactory
bulb, known as the rostral migratory stream (RMS). Once in the
olfactory bulb, the neuroblasts migrate in a radial fashion and
differentiate into several types of interneurons, integrating with the
granule cell and periglomerular layers (Luskin, 1993; reviewed by
Yao et al., 2012; Ming and Song, 2011). These adult-born neurons
maintain the structural integrity of the olfactory bulb and contribute
to olfactory memory, olfactory fear-conditioning and pheromone-
linked behaviour (Ming and Song, 2011; Lazarini and Lledo,
2011). The process continues throughout life in the rodent, albeit
at a declining rate with advancing age (Enwere et al., 2004;
Ahlenius et al., 2009). In addition, stem cells of the SVZ give rise
to oligodendrocyte progenitor cells, which migrate chiefly to the
corpus callosum and striatum (Levison and Goldman, 1993; Nait-
Oumesmar et al., 1999; Menn et al., 2006).

The existence of SVZ neurogenesis in the adult human brain
remains a matter of controversy. Although it is clear that a ribbon
of astrocyte-like stem cells with in vitro neurogenic capacity lines
the walls of the lateral ventricles (Kirschenbaum et al., 1994;
Pincus et al., 1998; Johansson et al., 1999; Sanai et al., 2004; Curtis
et al., 2007; Ayuso-Sacido et al., 2008; Kam et al., 2009), current
evidence suggests that the extent of neurogenesis in this zone is
negligible beyond late infancy (Wang et al., 2011; Sanai et al.,
2011). A clearly defined RMS, replete with cells bearing the
morphological and immunohistochemical attributes of migrating
neuroblasts, has been characterised in the human brain in early
post-natal life (Sanai et al., 2011). These cells are thought to
populate the olfactory bulb and an area of the developing prefrontal
cortex (Sanai et al., 2011). However, the proliferative activity of
the SVZ and the number of neuroblasts in the RMS decline
significantly during infancy such that neuroblasts are found
infrequently in the adult brain (Sanai et al., 2011; Wang et al.,
2011). Accordingly, the functional significance of SVZ
neurogenesis in the adult human brain remains in question and as
such it may be inappropriate to consider human SVZ and SGZ
neurogenesis in the same light, as is often done for model
organisms (Kempermann, 2012). Whether SVZ-derived
neuroblasts are recruited to any meaningful extent in the setting of
injury or disease in humans, as appears to occur in rodent models
(Arvidsson et al., 2002; Parent et al., 2002; Tattersfield et al.,
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Fig. 1. Location of CNS stem and progenitor cell niches. The
subventricular zones line the walls of the lateral ventricles, whereas the
subgranular zones reside between the hilus and granule cell layer of each
hippocampus. Oligodendrocyte progenitor cells are widely distributed in
the white and grey matter of the brain and spinal cord.
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2004), is unclear. A recent post-mortem study of human brains
suggested that enhanced SVZ neurogenesis may contribute to
repair in the setting of vascular dementia (Ekonomou et al., 2011),
but the functional significance of this is unknown. Another study
of human brains has identified increased SVZ neurogenesis in
Huntington’s disease (Curtis et al., 2003); however, the
regenerative potential of these cells is still to be established.

Oligodendrocyte progenitor cells (OPCs)
OPCs (alternatively named oligodendrocyte precursor cells or
NG2-glia) were first isolated from perinatal rat optic nerve in 1983
(Raff et al., 1983) and are now known to be widely distributed in
the grey and white matter of the adult brain and spinal cord,
constituting ~5% of all cells in the CNS (Pringle et al., 1992).
Although the vast majority of adult OPCs are mitotically quiescent
at any given point in time, they constitute the largest population of
cycling cells in the adult CNS (Horner et al., 2000; Dawson et al.,
2003). OPCs arise from the ventral and dorsal neuroepithelium of
the developing brain and spinal cord and migrate throughout the
CNS. OPCs display a degree of plasticity (Box 1), but their chief
progeny, the oligodendrocytes, are the main myelinating cells of
the CNS, facilitating efficient axonal conduction and providing
axons with metabolic and trophic support (Waxman, 1977; Felts et
al., 1997; Nave and Trapp, 2008; Lee et al., 2012; Fünfschilling et
al., 2012). OPCs play an essential role in maintaining CNS
myelination in health and disease. It is estimated that ~29% of the
total number of oligodendrocytes in the adult mouse corpus
callosum are the progeny of OPC differentiation after sexual
maturity (Rivers et al., 2008), and myelination is known to
continue throughout life, albeit at a declining rate beyond middle
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age (Lu et al., 2011). The loss of myelin in diseases such as
multiple sclerosis (MS), the most common disabling neurological
disease of young adults, triggers an endogenous regenerative
process known as remyelination. During remyelination, OPCs
proliferate and migrate to the site of injury where they differentiate
into myelinating oligodendrocytes. The process helps to guard
against axonal degeneration and is a key mechanism by which
functional improvement occurs after episodes of demyelination
(Franklin and ffrench-Constant, 2008).

In addition to providing new oligodendrocytes for myelination,
a growing body of evidence suggests that OPCs per se might play
important roles in information processing and in the maintenance
of neuronal homeostasis (Bakiri et al., 2009; reviewed by Franklin
and ffrench-Constant, 2008; Richardson et al., 2011). The finding
that OPC numbers far exceed the requirements for basal
oligodendrocyte turnover points to these additional roles for OPCs,
as does the abundance of these cells in grey matter, where the
requirement for myelinating oligodendrocytes is minimal. OPCs
have been shown to generate action potentials and to communicate
with neurons via synapses (Káradóttir et al., 2008), blurring the
boundaries between neuronal and glial cell types. The precise
nature and functional significance of this communication awaits
clarification. One possibility is that neuronal activity triggers
localised OPC differentiation and the subsequent myelination of
active neuronal circuits (Richardson et al., 2011). It is postulated
that activity-dependent myelination may sustain and enhance
neuronal circuitry, contributing to learning, memory consolidation
and cognitive function (Bakiri et al., 2009; Richardson et al., 2011).

Stem and progenitor cell ageing
Ageing can be defined as the physiological loss of homeostasis
over time. The ageing process affects all cells within an organ,
including stem cells. The extent to which stem cell ageing
contributes to ageing at the organismal level is the focus of ongoing
study (reviewed by Sharpless and DePinho, 2007; Sahin and
DePinho, 2010). Although neurogenesis and oligodendrogenesis
continue throughout life, significant age-related declines in these
processes are known to occur and the effects of this on CNS
function are now being unravelled. Interventions to delay or reverse
age-related declines in these stem cell populations may lie at the
heart of CNS rejuvenation therapies. The following sections
address CNS stem cell ageing by compartment, the mechanisms of
stem cell ageing, as well as interventions aimed at rejuvenating
stem cell function in the context of ageing. Given the uncertain
relevance of SVZ stem cells in the adult human brain, the ensuing
discussion will focus on OPCs and stem cells of the SGZ.

The ageing SGZ
It has long been known that neurogenesis in the rodent SGZ
declines significantly with advancing age (Altman and Das, 1965;
Seki and Arai, 1995; Kuhn et al., 1996). Studies have demonstrated
that the number of proliferating cells and the number of cells
immunoreactive for doublecortin, a marker of neurogenesis
expressed by neural progenitor cells and young neurons, in the
mouse SGZ reach a peak in early post-natal life, before declining
rapidly for several months and more slowly thereafter (Seki and
Arai, 1995; Kuhn et al., 1996; Kempermann et al., 1998; Ben
Abdallah et al., 2010). Conceptually, waning neurogenesis might
be the consequence of changes in stem or progenitor cell dynamics,
whether by terminal differentiation, prolongation of cell cycle
times, quiescence, senescence or death. Changes in the survival and
differentiation of their progeny might also be involved.

Box 1. Are oligodendrocyte progenitor cells neural
stem cells?
OPCs exhibit many features of stemness, including (reviewed by
Franklin and ffrench-Constant, 2008; Richardson et al., 2011):

Self-renewal
The capacity to maintain the oligodendrocyte lineage (Dawson et
al., 2003; Rivers et al., 2008).

Multipotency
In vivo fate-mapping studies confirm that the progeny of OPC
differentiation include oligodendrocytes, Schwann cells and
astrocytes (Tatsumi et al., 2008; Zhu et al., 2008a; Zhu et al.,
2008b; Tripathi et al., 2010; Zawadzka et al., 2010; Tsai et al.,
2012; Zhu et al., 2012). Evidence for neural differentiation is mixed
and it is possible that OPCs give rise to a subset of neurons in the
piriform cortex during development (Guo et al., 2010; Rivers et al.,
2008; Kang et al., 2010; Clarke et al., 2012). Cultured OPCs are
readily induced to yield neurospheres, which in turn give rise to
mixed colonies of oligodendrocytes, astrocytes and neurons (Kondo
and Raff, 2000; Nunes et al., 2003).

Asymmetric division
Genetic fate-mapping studies and live cell imaging have confirmed
that single OPCs may self-renew or give rise to either two
oligodendrocytes, or one OPC and one oligodendrocyte (Zhu et al.,
2011). In most instances, the initial division is symmetric with
daughter cells subsequently assuming different fates (Zhu et al.,
2011). Whether true asymmetric division occurs is unclear. One
study demonstrating asymmetric segregation of the proteoglycan
NG2 (CSPG4) as well as epidermal growth factor receptor is
suggestive of asymmetric division (Sugiarto et al., 2011); however,
further evidence is required to prove definitively that OPCs can
undergo asymmetric cell division.
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Studies of rodents variably demonstrate no significant loss
(Hattiangady and Shetty, 2008; Lugert et al., 2010) or substantial
loss (Olariu et al., 2007; Walter et al., 2011; Jinno, 2011) of stem
and progenitor cells from the SGZ with age. These conflicting
observations might in part be attributable to the use of different
animal models as well as different methods for the quantification
of stem and progenitor cell numbers (Artegiani and Calegari,
2012). Many studies have demonstrated marked age-related
declines in stem and progenitor cell proliferation in the dentate
gyrus (Kuhn et al., 1996; Cameron and McKay, 1999; Bondolfi et
al., 2004; McDonald and Wojtowicz, 2005). However, it is not
entirely clear whether this is more attributable to cell quiescence
(Hattiangady and Shetty, 2008) or to the prolongation of cell cycle
times, as data pertaining to the latter are mixed (McDonald and
Wojtowicz, 2005; Rao et al., 2005; Olariu et al., 2007). A recent
study has indicated that waning neurogenesis in the ageing mouse
hippocampus is due to the transition of a subset of proliferating
progenitor cells to a quiescent state, under the control of canonical
Wnt signalling (Lugert et al., 2010).

Questions remain about the effects of ageing on the fate of cells
born by adult neurogenesis, both in terms of their survival and the
proportion of cells that undergo neuronal differentiation. Some
studies have demonstrated that cell survival does not decrease as a
function of age (Bondolfi et al., 2004; McDonald and Wojtowicz,
2005), whereas others have documented a significant decline in cell
survival in old age (Kempermann et al., 1998; van Praag et al.,
2005). Neuronal differentiation rates have variously been shown to
remain relatively constant throughout life (Seki, 2002; Bondolfi et
al., 2004; Rao et al., 2005; McDonald and Wojtowicz, 2005) or to
decline significantly with age (Kempermann et al., 1998; van Praag
et al., 2005). Ageing might also be associated with fate switching
of progeny towards glial lineages (van Praag et al., 2005). A
consensus appears to have been reached about the phenotypes of
newborn SGZ neurons in young and old mice: neurons are
morphologically comparable and they exhibit similar dendritic
spine densities (an indicator of glutamatergic afferent connectivity)
(van Praag et al., 2005; Morgenstern et al., 2008). Furthermore, the
newborn granule cells of young and old mice are
electrophysiologically indistinguishable (Couillard-Despres et al.,
2006), supporting the notion that these neurons are equally
equipped to make functional contributions to the hippocampal
circuitry.

Rodent studies have variously demonstrated positive correlation
(Kempermann et al., 1998; Drapeau et al., 2003; Driscoll et al.,
2006) or no correlation (Merrill et al., 2003; Bizon et al., 2004)
between the extent of hippocampal neurogenesis and age-related
performance declines in selected learning and memory tasks.
Nevertheless, interventions to reduce hippocampal neurogenesis
have repeatedly resulted in impaired cognitive function that mirrors
changes characteristic of ageing (Shors et al., 2001; Montaron et
al., 2006). Similarly, interventions that enhance neurogenesis
typically improve cognitive function (Kempermann et al., 1998;
Kempermann et al., 2002; van Praag et al., 2005; Montaron et al.,
2006). Thus, it is clear that aspects of age-related cognitive decline
are related to declining hippocampal neurogenesis. However, the
relationship between ageing and neurogenesis is complex and
hippocampal dysfunction accounts for part of a broader spectrum
of changes in cognitive function with age (van Praag et al., 2005;
Artegiani and Calegari, 2012; Kempermann et al., 2012).

Although there are few studies on the effects of ageing on
human SGZ neurogenesis, it is thought that the process follows a
trajectory similar to that observed in rodents and in non-human

primates (Leuner et al., 2007). A recent analysis of human brain
tissue across a broad age spectrum demonstrated an exponential
decline in the number of cells in the dentate gyrus staining positive
for doublecortin and several other surrogate markers of
neurogenesis (Knoth et al., 2010). These findings are broadly in
keeping with those of a study using magnetic resonance
spectroscopy to quantify neurogenesis in living human subjects
(Manganas et al., 2007), although the methodological rigour of this
latter study has been in question (Hoch et al., 2008; Jansen et al.,
2008).

Ageing oligodendrocyte progenitor cells
Ageing is associated with the loss of myelin. Imaging studies of the
human brain have demonstrated that white matter volume peaks in
middle age and declines thereafter (Bartzokis et al., 2003; Fields,
2010; Lu et al., 2011; Bartzokis et al., 2010). In support of this,
histopathological studies of human brains have demonstrated that
neocortical white matter volumes decline some 28% between the
ages of 20 and 80 years (Pakkenberg and Gundersen, 1997) and
oligodendrocyte numbers decline in the order of 27% between 20
and 90 years of age, approximately two to three times greater than
the extent of neuron loss (Pakkenberg and Gundersen, 1997; Pelvig
et al., 2008). The degree to which age-related myelin loss is due to
primary oligodendrocyte dysfunction, as opposed to being a
consequence of axon loss, remains to be determined. The loss of
myelin integrity with age, reflected by ultrastructural changes and
characteristic magnetic resonance imaging signatures, has been
shown to follow a similar trajectory to a surrogate marker
(maximal finger tapping speed) of human cognitive performance
(Bartzokis et al., 2010). These alterations, coupled with significant
derangements in myelin biochemistry, support the notion that white
matter disruption plays a role in age-related cognitive decline
(reviewed by Hinman and Abraham, 2007). Accordingly,
interventions aimed at rejuvenating CNS myelination may be
broadly applicable to ageing human populations. Interestingly,
myelin loss and disruption with ageing is not likely to be due to the
loss of OPCs as studies in mice have demonstrated that stable
numbers of OPCs are maintained well into old age (Sim et al.,
2002; Rivers et al., 2008). In keeping with this observation, OPC
depletion is not frequently encountered in animal models of
recurrent demyelination (Penderis et al., 2003) and it is only
thought to play a role in remyelination failure in the context of
sustained demyelinating pathology (Ludwin, 1980; Mason et al.,
2004). Although the speed of OPC repopulation of experimentally
irradiated spinal cord declines with age in rats, it remains an
efficient process nonetheless (Chari and Blakemore, 2002; Chari et
al., 2003), suggesting that OPC migration is unlikely to be the
major limiting factor in age-related myelin loss.

Studies in the mouse demonstrate that OPC cycle times increase
significantly with advancing age and this has been associated with
reductions in oligodendrocyte production (Psachoulia et al., 2009).
Thus, in normal ageing, reductions in oligodendrogenesis might be
due in part to declining OPC proliferation. By contrast, although
OPC proliferation remains robust in aged rodents following
experimental demyelination, impaired OPC differentiation leads to
delayed remyelination (Shields et al., 1999; Sim et al., 2002).
Similarly, impaired OPC differentiation is a well recognised, and
possibly causal, factor in chronically demyelinated MS lesions in
humans (Wolswijk, 1998; Kuhlmann et al., 2008) where
remyelination failure is a key contributor to the burden of disease.
Age-related OPC differentiation failure following experimental
demyelination has been attributed to a variety of factors, including D
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impaired phagocytosis of myelin debris by aged macrophages
(Shields et al., 1999; Kotter et al., 2006) and changes in the
epigenetic regulation of OPC differentiation (Shen et al., 2008). In
young mice, downregulation of OPC differentiation inhibitors
normally precedes remyelination and this is associated with the
recruitment of histone deacetylases (HDACs) to the promoter
regions of these genes. In old mice, HDAC recruitment is
inefficient, resulting in the accumulation of transcriptional
inhibitors and impaired OPC differentiation (Shen et al., 2008).
Furthermore, age-related declines in signalling via the nuclear
receptor retinoid X receptor-γ (RXR-γ) have been demonstrated to
be important in OPC differentiation failure during remyelination,
and aged rats treated with an RXR-γ agonist exhibited increased
OPC differentiation and accelerated remyelination relative to young
controls (Huang et al., 2011). Interestingly, the decline in RXR
signalling in the brains of ageing rodents has also been associated
with impairments of memory tasks subserved by the hippocampus
(Mingaud et al., 2008).

General mechanisms of CNS stem and progenitor
cell ageing
Ageing is a complex phenomenon characterised by a wide range of
cellular perturbations including: DNA damage; telomere
shortening; cell cycle dysregulation; epigenetic change; protein and
lipid modification and dysfunction; protein aggregation; deficient
autophagy; bioenergetic impairment and oxidative stress as well as
the activation of stress response pathways (Kenyon, 2010;
Sharpless and DePinho, 2007; Sahin and DePinho, 2010;
Rubinsztein et al., 2011; Artegiani and Calegari, 2012). These
perturbations can lead to changes in cell proliferation and
differentiation, the induction of senescence, or cell death. The
cellular changes of ageing occur in the broader context of age-
related alterations in the local environment of the cell and in the
systemic environment (reviewed by Artegiani and Calegari, 2012).
Examples include changes in cytokine and growth factor profiles,
in the composition of the extracellular matrix and in the availability
of oxygen and nutrients. Furthermore, ageing may be associated
with inflammation and with changes in the function of cells that
constitute integral parts of the stem cell niche, such as vascular
endothelial cells and astrocytes. These stem cell-extrinsic changes
have the capacity to alter stem cell function as well as the
differentiation, survival and function of their progeny. A wide range
of animal models has provided valuable insights into the
mechanisms of CNS ageing (reviewed by Yeoman et al., 2012).
Nevertheless, different mechanisms are likely to predominate in
different species, or even in different cell populations within a
given species. As a case in point, although telomere length is
considered to be a significant determinant of ageing in humans, it
appears to be far less influential in mice under normal
circumstances (Sharpless and DePinho, 2007). Some of the key
determinants of CNS stem cell ageing will be addressed below.
Although a distinction between cell-intrinsic and extrinsic
mechanisms may be reductionist, it provides a convenient
framework for this discussion.

Cell-intrinsic mechanisms
The forkhead box O (FoxO) family of transcription factors has
been implicated in the regulation of longevity in a wide range of
species, including humans (Willcox et al., 2008; Flachsbart et al.,
2009; Kenyon, 2010). They are known to influence adult neural
stem cell homeostasis both in vitro and in vivo (Paik et al., 2009;
Renault et al., 2009) (Table 1; Fig. 2). For example, FoxO-null
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mice exhibit Wnt pathway hyperactivity that leads to neural stem
cell exhaustion and depletion (Paik et al., 2009). Although there is
redundancy within the FoxO family, the loss of FOXO3 appears to
be particularly influential on neural stem cell function, leading to
a loss of self-renewal and consequent stem cell depletion (Table 1).
The regulators of FoxO transcription factors are many and varied
and as such they act as a link between internal and external stimuli
that impact on ageing.

It is hypothesised that many of the endogenous processes that
contribute to declining stem cell function with age constitute
defence mechanisms against the increasing risk of neoplasia
(reviewed by Sharpless and DePinho, 2007). These defences
include growth arrest, senescence and apoptosis. Key regulators of
these processes include the tumour suppressors ARF (CDKN2A),
p53 (TRP53 in mouse; TP53 in human) and their downstream
effectors, including p21CIP (CDKN1A). These and other factors set
the balance between senescence or apoptosis versus neoplasia,
thereby establishing the temporal basis for stem cell decline
(Sharpless and DePinho, 2007). Age-associated changes in the
expression of the senescence regulator p16INK4a (CDKN2A), a
cyclin-dependent kinase inhibitor, provide a case in point:
increasing expression of this factor has been associated with
declining proliferation and self-renewal of mouse SVZ stem cells
(Molofsky et al., 2006). In addition, mice deficient in this factor
show smaller age-related reductions in SVZ stem cell function and
neurogenesis at the expense of increased cancer incidence
(Molofsky et al., 2006). Notably, p16INK4a deficiency has no
appreciable effect on SGZ stem cell function, pointing to regional
variation in regulatory mechanisms (Molofsky et al., 2006).
Interestingly, caloric restriction, an intervention well known to have
anti-ageing effects in a wide range of species, reduces the age-
related increase in the expression of p16INK4a and a suite of other
senescence factors (Krishnamurthy et al., 2004; Edwards et al.,
2007).

A growing body of data implicates telomere shortening in age-
related stem cell decline. Telomeres are nucleoprotein caps on the
ends of chromosomes that maintain chromosomal integrity
(reviewed by Sahin and DePinho, 2010). Telomeres are maintained
by the enzyme telomerase; however, most cells lack sufficient
telomerase activity to prevent telomere shortening on cell division.
Telomerase-deficient mice exhibit an accelerated ageing phenotype
and the reactivation of telomerase function in these mice is
accompanied by striking CNS rejuvenation: age-related myelin loss
is reversed and oligodendrocyte numbers are restored to normal
levels, and elevated SVZ neurogenesis leads to improved olfactory
function (Jaskelioff et al., 2011). These changes are associated with
rapid telomere elongation in SVZ stem cells. Such observations
support the notion that, at least in this experimental system,
telomere reconstitution can restore endogenous CNS stem cell
function leading to robust rejuvenation.

Age-related impairments in mitochondrial function lead to a
reduced efficiency of oxidative phosphorylation, and also to a
deficiency in cellular energy and the generation of reactive oxygen
species (ROS). ROS can directly contribute to DNA damage,
accelerate telomere shortening and activate the p53/p21 signalling
axis (Fig. 2) (Sahin and DePinho, 2010). FoxOs are known to be
important in driving the expression of a range of genes that regulate
mitochondrial function and ROS generation, further strengthening
the link between FoxOs and stem cell ageing (Tothova et al., 2007;
Ferber et al., 2012). In addition to their better-known roles as
injurious agents, ROS can also function as intracellular second
messengers to regulate normal cellular processes. At least in vitro, D
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intracellular redox state influences the balance between neural stem
cell self-renewal and differentiation, with an oxidised environment
generally favouring differentiation (Le Belle et al., 2011; reviewed
by Huang et al., 2012). Moreover, in the setting of differentiation,
redox state is implicated in cell fate determination: a reduced
intracellular environment appears to favour neural differentiation
of SGZ stem cells, whereas an oxidised environment favours glial
differentiation (Prozorovski et al., 2008). The maintenance of low
intracellular levels of ROS appears to be important in OPC self-
renewal and the maintenance of an undifferentiated state (Smith et
al., 2000; Power et al., 2002; Li et al., 2007). Accordingly, age-
associated increases in the generation of ROS might influence CNS
stem cell proliferation, differentiation and fate determination.

It is clear that complex inter-relationships exist between the
many determinants of stem cell ageing. A recent unifying
hypothesis proposed by Sahin and DePinho (Sahin and DePinho,

2010; Sahin and DePinho, 2012) identifies a central axis of ageing
whereby DNA damage and telomere shortening converge on p53
activation and the suppression of mitochondrial biogenesis [via
PGC1α (PPARGC1A) and PGC1β (PPARGC1B)]. The consequent
bioenergetic deficiency, ROS accumulation and further DNA
damage lead to cellular adaptations and ultimately to survival,
growth arrest, senescence or apoptosis, depending on the specific
cellular context.

Alternative ageing paradigms place greater emphasis on nutrient-
sensing pathways and regulators of cell growth and metabolism,
such as the mechanistic target of rapamycin (mTOR) (reviewed by
Johnson et al., 2013) and the sirtuins (reviewed by Finkel et al.,
2009; Imai and Guarente, 2010). mTOR is activated by a diverse
array of extrinsic cues, including hormones and growth factors,
such as insulin and insulin-like growth factor 1 (IGF1), as well as
metabolites and nutrients. These factors converge to drive a wide

Table 1. FoxO transcription factors and the regulation of neural stem cell homeostasis 

Action Evidence References 

Maintenance of neural stem cell 
(NSC) populations via the 
preservation of self-renewal 

Adult Foxo3–/– mice have fewer NSCs in the SVZ and SGZ than do wild-type 
mice 

FOXO3 and FOXO1 are highly expressed in NSC niches 
FOXO3 activity is higher in self-renewing NSCs than in differentiated 

progeny 
Foxo3–/– and FOXO1/3/4-deficient NSCs exhibit diminished capacity for 

neurosphere formation in vitro 
Foxo3–/– mice and mice with conditional knockout of Foxo1, Foxo3 and 

Foxo4 exhibit transient amplification of progenitor cells and stem cell 
exhaustion/depletion 

Renault et al., 2009; Paik et 
al., 2009 

Maintenance of NSC 
multipotentiality  

Loss of FOXO3 renders NSCs similar to committed progenitor cells: 
secondary neurospheres derived from the culture of adult Foxo3–/– NSCs 
have more restricted cellular fates (skewed towards astrocytic 
differentiation) than do those from Foxo3+/+ NSCs 

Renault et al., 2009 
 

Regulation of genes important for 
NSC quiescence 

FoxOs control the expression of a wide range of cell cycle regulators, 
including cyclin G2, ASPM and p27KIP1 (CDKN1B), allowing NSCs to enter a 
state of relative quiescence following division, guarding against NSC 
depletion 

Similar actions in a wide range of cell types 

Renault et al., 2009; Paik et 
al., 2009 

Enhancement of NSC resistance to 
oxidative stress and hypoxia  

FOXO3 regulates the expression of genes involved in the response to 
hypoxia and oxidative stress 

FOXO1/3/4-deficient NSCs have diminished expression of ROS-detoxifying 
enzymes and increased ROS levels with associated impairment of self-
renewal 

Similar actions in a wide range of cell types 

Renault et al., 2009; Paik et 
al., 2009; Tothova et al., 
2007; Ferber et al., 2012 

Optimisation of cellular 
metabolism for self-renewal 

FoxOs regulate the expression of genes involved in glucose metabolism and 
transport 

Similar actions in a wide range of cell types 

Renault et al., 2009 

Regulation of autophagy FOXO3A is a key regulator of autophagy (a determinant of ageing) in 
haematopoietic stem cells 

Warr et al., 2013; Rubinsztein 
et al., 2011 

Regulation of Wnt signalling FoxOs regulate Wnt signalling at multiple levels. Inhibition of Wnt 
signalling is important in NSC self-renewal. 

Paik et al., 2009 

Integration of internal and 
external stimuli that impact on 
ageing 

FOXO3 is phosphorylated and inactivated by AKT. The PI3K-AKT pathway is 
activated by a wide range of extrinsic and intrinsic signals, including 
insulin and growth factors such as IGF1. 

Oxidative and nutrient stress (as encountered in caloric restriction) activate 
numerous signalling cascades, culminating in the post-translational 
modification of FoxOs by factors such as AMPK (AMP-dependent kinase), 
JNK (Jun-N-terminal kinase), SLK (mammalian Ste20-like kinase) and CBP 
(CREB-binding protein), which facilitate FoxO action. FoxOs also interact 
with the deacetylase sirtuin 1, which is a key mediator of the longevity-
promoting effects of caloric restriction. 

 

This list of functions is not exhaustive (for reviews, see Salih and Brunet, 2008; Greer and Brunet, 2008). It is important to note that the specific targets of FoxOs vary 
significantly between cell compartments (Miyamoto et al., 2007; Tothova et al., 2007), resulting in tissue-specific expression profiles (Paik et al., 2007; Paik et al., 2009; 
Renault et al., 2009). 
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range of anabolic cellular processes, such as lipid and protein
synthesis, inhibition of autophagy, and inhibition of FOXO3A
(Fig. 2). Interestingly, inhibition of mTOR signalling has longevity-
enhancing effects in a wide range of animal models (Johnson et al.,
2013). The role of mTOR signalling in the ageing of CNS stem cell
compartments is still emerging: mTOR appears to regulate the
proliferative activity of transient amplifying progenitor cells in the
mouse SVZ, and age-related declines in signalling are thought to
contribute to their quiescence (Paliouras et al., 2012). mTOR
signalling has also been shown to contribute to oligodendrocyte
differentiation (Tyler et al., 2009; Guardiola-Diaz et al., 2012). As
such, the mTOR pathway might serve as another link between
intrinsic and extrinsic regulators of stem and progenitor cell
function in the CNS.

Extrinsic regulators
In addition to the intrinsic mechanisms discussed above, many
extrinsic factors, such as psychological stress, physical exercise and
diet, regulate stem cell function and ageing. These factors modulate
various signalling pathways to effect changes in the proliferation,

REVIEW Development 140 (12)

differentiation and migration of CNS stem cells and their progeny.
Their importance is emphasised by the numerous studies that
demonstrate positive associations between neurogenesis in rodents
and the levels of various soluble growth factors, including IGF1,
fibroblast growth factor 2 (FGF2), brain-derived neurotrophic
factor (BDNF) and vascular endothelial growth factor (VEGF)
(reviewed by Artegiani and Calegari, 2012; Fournier and Duman,
2012). Overexpression or exogenous administration of these
growth factors have been shown to enhance neurogenesis, learning
and memory in animal models (Aberg et al., 2000; Lichtenwalner
et al., 2001; Cao et al., 2004). Reductions in growth factor
signalling in the ageing rodent hippocampus are known to occur
for each of these factors (Shetty et al., 2005; Hattiangady et al.,
2005) and recent studies suggest that waning levels of VEGF and
FGF2 expression by astrocytes might be key determinants of
declining neurogenesis (Bernal and Peterson, 2011). Furthermore,
the inhibition of FGF2 (Zhao et al., 2007) and VEGF (Cao et al.,
2004; Pati et al., 2009) signalling has been associated with
impaired cognitive function in rodents. In the case of VEGF, this
occurred both in the presence of (Cao et al., 2004) and the absence

PI3K-AKT

FoxOs
mTOR

AMPK

PGC1α

p53

SIRT1

JNK
SLK

Oxidative stress

Nutrient stress 

     · glucose/amino acid deficiency 

      · ↑ AMP/ATP

Efficient 

mitochondrial function

ROS

DNA damage

Telomere shortening

p21CIP

p16INK4a

ARF
Wnt 

signalling

Insulin

Growth factors

      · IGF1

Neural stem cell maintenance

   ·  self renewal

   ·  quiescence

   ·  stress resistance

   ·  autophagy

CBP

Fig. 2. Key signalling pathways in CNS stem cell ageing. This simplified model highlights some of the key interactions between signalling pathways
thought to be important in CNS stem cell ageing. Green arrows represent activation and red bars represent inhibition. Nutrient and oxidative stress
activate a host of signalling pathways, including AMP-dependent kinase (AMPK), sirtuin 1 (SIRT1), Jun-N-terminal kinase (JNK; also known as MAPK8),
mammalian STE20-like kinase (SLK) and CREB-binding protein (CBP; also known as CREBBP), which collectively activate catabolic cellular processes.
These pathways converge on the FoxO transcription factors and PPARγ co-activator 1α (PGC1α). FoxOs are of central importance in maintaining neural
stem cell homeostasis and self-renewal. PCG1α triggers mitochondrial biogenesis and improves mitochondrial function, reducing the generation of
reactive oxygen species (ROS) and slowing stem cell ageing. DNA damage and telomere shortening act via p53 to inhibit PCG1α expression, with
resultant mitochondrial dysfunction, bioenergetic impairment and ROS generation, all of which may contribute to stem cell decline. Furthermore, p53
can induce stem cell apoptosis or senescence. Insulin and a number of growth factors act via phosphoinositide-3 kinase (PI3K) and AKT to trigger a
wide range of anabolic cellular processes, some of which are mediated by the mechanistic target of rapamycin (mTOR). mTOR drives stem cells towards
proliferation and differentiation, and the inhibition of mTOR signalling has been demonstrated to enhance stem cell self-renewal (reviewed by Johnson
et al., 2013). mTOR is found in two complexes, mTORC1 and mTORC2, which have distinct actions (depicted together in this figure for convenience). The
relative contributions of the individual pathways to stem cell ageing may vary between niches. These pathways are reviewed in detail by others (Sahin
and DePinho, 2007; Sahin and DePinho, 2010; Sharpless and DePinho, 2007; Johnson et al., 2013).
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of (Pati et al., 2009) detectable changes in neurogenesis, pointing
to a complex role of the factor in cognition (reviewed by Fournier
and Duman, 2012). The actions of these growth factors on stem
and progenitor cell dynamics are complex and context dependent.
For instance, although insulin and IGF1 signalling enhance stem
and progenitor cell proliferation, low levels of these factors
promote longevity and cognitive function in a wide range of animal
models (reviewed by Rafalski and Brunet, 2011). This apparent
paradox points to the importance of a balance between stem cell
quiescence and proliferation in maintaining the stem cell
population over a lifespan on one hand, and meeting the
requirements for new neurons on the other hand (Rafalski and
Brunet, 2011).

SVZ neurogenesis has been induced in rodents by
intraventricular infusion of FGF2 (Kuhn et al., 1997) or BDNF
(Zigova et al., 1998); subcutaneous injection of FGF2 (Jin et al.,
2005); or ependymal cell overexpression of BDNF and noggin
(Benraiss et al., 2001; Benraiss et al., 2012; Chmielnicki et al.,
2004; Cho et al., 2007), resulting in enhanced recruitment of
neurons to the olfactory bulb and striatum (reviewed by Benraiss
and Goldman, 2011). The addition of striatal neurons by these
means improved motor coordination and prolonged lifespan in a
mouse model of Huntington’s disease (Jin et al., 2005; Cho et al.,
2007). Although such work raises the prospect of induced
neurogenesis for this and other neurodegenerative disorders, the
utility of such an approach in humans is unknown. The observation
that neurogenesis might be increased in the human brain in a range
of diseases, including Alzheimer’s disease (Jin et al., 2004),
Huntington’s disease (Curtis et al., 2003) and vascular dementia
(Ekonomou et al., 2011), attests to the influence of local
environmental cues, although many of these cues are as yet
unidentified. The neuroprotective and regenerative actions of stem
cells are mediated in part by secreted trophic factors (Giusto et al.,
2013), which might in turn depend on cross-talk with the immune
system, or on the endogenous stem cells themselves (Martino and
Pluchino, 2006; Kokaia et al., 2012).

Age-related changes in key extrinsic regulators of neurogenesis
may be compounded by psychological stress. Stress may impair
hippocampal neurogenesis in rodents, and reduced VEGF
signalling as well as elevated glucocorticoid levels are likely to
contribute to this (reviewed by Fournier and Duman, 2012; Eisch
and Petrik, 2012; Artegiani and Calegari, 2012). Similarly, social
isolation, a form of psychological stress, impairs myelination of the
prefrontal cortex in young (Makinodan et al., 2012) and adult (Liu
et al., 2012) mice, with associated behavioural dysfunction. Social
reintegration improves myelination and normalises behaviour in
adult mice, but not in young mice. The provision of environmental
enrichment to laboratory rodents increases their social interaction
and sensorimotor stimulation and enhances their stress resilience
(reviewed by Mora et al., 2012). In turn, environmental enrichment
enhances SGZ neurogenesis, learning and memory in young and
old rodents alike via actions on progenitor differentiation and
neuronal survival (Kempermann et al., 1997; Kempermann et al.,
1998; Cao et al., 2004). This effect is mediated in part by VEGF
produced by neurons and astrocytes (Cao et al., 2004). Enrichment
also appears to reduce microglial proliferation and promote OPC
differentiation in the mouse amygdala (Ehninger et al., 2011).

Physical exercise provides another example of the influence of
extrinsic factors on CNS stem cell function and ageing. Exercise
robustly enhances hippocampal neurogenesis and associated
cognitive functions in rodents, even in old age (van Praag et al.,
1999; van Praag et al., 2005; Kronenberg et al., 2006; reviewed by

van Praag, 2008). This effect is mediated in part by upregulation
of VEGF (Fabel et al., 2003) and possibly IGF1 (Carro et al., 2000;
Trejo et al., 2008; Yau et al., 2012) and BDNF (Adlard et al., 2005;
Yau et al., 2012). Exercise has been shown to reduce hippocampal
microglial proliferation in aged mice and induce a switch away
from a pro-inflammatory phenotype, typical of ageing, to a
neuroprotective phenotype that might promote neurogenesis
(Kohman et al., 2012). Exercise training can reduce age-related
hippocampal astrocyte reactivity (Latimer et al., 2011) and enhance
hippocampal blood flow (Pereira et al., 2007), optimising the local
microenvironment for stem cell function. In fact, exercise-induced
increases in blood flow to the human dentate gyrus have been
correlated with the extent of neurogenesis at post-mortem
examination (Pereira et al., 2007). Exercise has also been
demonstrated to modulate energy metabolism and mitochondrial
biogenesis in the brain (Matsui et al., 2012; Zhang et al., 2012). In
a mouse model of schizophrenia, physical exercise was
demonstrated to enhance telomerase activity and hippocampal
function (Wolf et al., 2011). Exercise might also enhance OPC
differentiation in the young adult mouse cortex, possibly as a
consequence of the increased cortical neuronal activity associated
with exercise (Simon et al., 2011).

In a similar vein, dietary restriction, arguably the best
characterised and most reproducible non-genetic manipulation to
slow the ageing process in mammals, has been demonstrated to
influence stem cell function in the ageing brain (reviewed by Park
and Lee, 2011). Short-term caloric restriction increases
hippocampal neurogenesis in young rats (Lee et al., 2000) and mice
(Lee et al., 2002a), by enhancing the survival of newborn neurons
without demonstrable effects on progenitor cell proliferation. These
actions have been attributed to enhanced BDNF signalling (Lee et
al., 2000; Lee et al., 2002a) as well as increased hippocampal
expression of neurotrophin 3 (Lee et al., 2002b) and interferon-γ
(Lee et al., 2006). It is likely that additional mechanisms are
important given the numerous metabolic consequences of caloric
restriction, including the activation of AMP-dependent kinase and
sirtuin 1 as well as reduced insulin and mTOR signalling (Fontana
et al., 2010; Imai and Guarente, 2010; Lu et al., 2011) (Fig. 2).
Moreover, it is possible that the effects of caloric restriction on
CNS stem cell function may vary over time: one study has
suggested that long-term restriction increases the survival of young
adult-born glial cells, but not neurons (Bondolfi et al., 2004).
Whereas most studies of dietary restriction limit total calorie
consumption, recent work points to the importance of dietary
composition, namely amino acid balance, in regulating ageing
processes (Grandison et al., 2009). This might be particularly true
for humans, in whom caloric restriction in the absence of protein
restriction does not appear to reduce serum IGF1 levels, as it does
in rodents (Fontana et al., 2008). Little is known of the effects of
dietary composition on CNS stem cell ageing.

Insights into the relative contributions of CNS-intrinsic and
extrinsic determinants of stem cell function in the aged brain have
been provided by studies using heterochronic parabiosis, a model
in which surgically conjoined young and old mice develop a shared
circulatory system (Fig. 3). In this system, young mice exhibit
impaired hippocampal neurogenesis, learning and memory when
exposed to an aged systemic milieu (Villeda et al., 2011) (Fig. 3A).
Elevated serum levels of the chemokine eotaxin (CCL11) in young
mice were correlated with this effect. Moreover, the administration
of exogenous eotaxin to young mice recapitulated the inhibitory
effects of ageing on hippocampal neurogenesis (Villeda et al.,
2011). This study provides strong evidence that the ageing systemic D
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environment impairs neurogenesis in the brain. In another study,
heterochronic parabiosis was used to examine the remyelination of
demyelinating spinal cord lesions in mice (Ruckh et al., 2012), a
process that normally exhibits a significant age-related decline,
largely due to impaired differentiation of OPCs. OPC
differentiation and remyelination were significantly enhanced in
old mice exposed to a young systemic milieu (Fig. 3B). The effect
was mediated in part by the enhanced clearance of myelin debris
by monocytes recruited from the young mouse circulation. This
work highlights that aged OPCs retain the potential for robust
remyelination and that their ability to realise this potential is
significantly influenced by the systemic milieu, a finding that is
pertinent to the development of treatments for MS.

Perspectives on CNS rejuvenation
Although major advances have been made in our understanding of
CNS stem cell ageing, there is much still to be learned before broadly
applicable rejuvenating therapies can be developed. Ageing is an
extremely complex process with diverse manifestations at multiple
levels. Accordingly, it is likely that successful rejuvenation strategies
will target multiple aspects of the ageing process. The recent
counterintuitive finding that resveratrol, a calorie-restriction mimetic
and candidate anti-ageing therapeutic, impairs hippocampal
neurogenesis and cognitive function in mice, provides a case in point
(Park et al., 2012). In the quest for rejuvenation it is important not to
lose sight of the fact that anti-ageing interventions have the potential
for harm, especially considering that at a cellular level many ageing
processes constitute defences against neoplasia.

The task of bolstering the function of stem cells within their
existing niches in the face of advancing age seems to be the most
readily achievable objective in CNS rejuvenation. Enhancing
hippocampal neurogenesis may go some way to combating age-
related cognitive decline; however, hippocampal dysfunction only
constitutes part of the broader spectrum of cognitive impairment
with age. Other potentially important therapeutic targets of
increased hippocampal neurogenesis include depression and
schizophrenia (Eisch and Petrik, 2012). Enhanced OPC function
may contribute to improved myelin maintenance, which might also
guard against some of the cognitive changes of ageing, but the
extent of this effect remains to be seen. Strategies for enhancing the
efficiency of regenerative remyelination may have a tremendous
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impact on the management of demyelinating diseases, such as MS
(Franklin et al., 2012). OPCs are widely dispersed in the CNS and
their ability to migrate to sites of demyelination does not appear to
be significantly diminished with age. When these observations are
taken together with the finding that aged OPCs retain the capacity
for robust remyelination, the therapeutic rejuvenation of
remyelination in the ageing CNS seems to be an achievable goal.

Stemming the tide of neurodegenerative diseases and repairing
the injured brain and spinal cord are likely to prove significantly
more difficult than enhancing remyelination. Key challenges in
achieving these therapeutic goals include the large numbers of cells
required for repair and reconstruction, as well as the relatively large
distances that progenitors might need to travel from the niche to
sites of repair. Other major hurdles lie in transforming relatively
inhospitable non-niche environments into sites that enable local
neurogenesis, cell differentiation and survival as well as facilitating
the meaningful integration of newborn neurons into established
neural networks. Disease-related local and systemic environmental
perturbations might compound these challenges. The progeny of
endogenous neurogenesis are ordinarily restricted to a narrow range
of fates: granule cells in the dentate gyrus and interneurons in the
olfactory bulb. Appropriate fate-specification to meet the
requirements of rejuvenation poses a formidable challenge.

Progress in the development of therapies for CNS rejuvenation
will inevitably be made as we begin to unravel the complex
mechanisms underlying stem cell aging. In the meantime,
adherence to the basic tenets of healthy living – eating in
moderation, staying physically and intellectually active, and
avoiding psychological stress – may constitute the most effective
means we have of rejuvenating the CNS. Thus, we end this Review
by returning to Shakespeare’s Hamlet: age may continue to make
his stealing steps, but we are beginning to claw back from his
clutch, little by little.
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