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Over the last three decades, advances in biochemical pathology and human genetics have
illuminated one of the most enigmatic subjects in biomedicine—neurodegeneration.
Eponymic diseases of the nervous system such as Alzheimer’s, Parkinson’s, and Huntington’s
diseases that were long characterized by mechanistic ignorance have yielded striking
progress in our understanding of their molecular underpinnings. A central theme in these
and related disorders is the concept that certain normally soluble neuronal proteins can
misfold and aggregate into oligomers and amyloid fibrils which can confer profound cytotox-
icity. Perhaps the foremost example, both in terms of its societal impact and how far knowl-
edge has moved toward the clinic, is that of Alzheimer’s disease (AD). Here, we will review
the classical protein lesions of the disorder that have provided a road map to etiology and
pathogenesis. We will discuss how elucidating the genotype-to-phenotype relationships
of familial forms of Alzheimer’s disease has highlighted the importance of the misfolding
and altered proteostasis of two otherwise soluble proteins, amyloid b-protein and tau,
suggesting mechanism-based therapeutic targets that have led to clinical trials.

Among the human disorders marked by pro-
tein misfolding and aggregation, Alzheimer’s

disease looms large. This enormously common
degeneration of limbic and association cortices
and related subcortical nuclei slowly robs its
victims of their most human qualities: memory,
reasoning, abstraction, and language. The dis-
ease has no doubt existed for millennia but
was often confused with other syndromes that
also presented as “senile dementia,” that is,
progressive cognitive decline after middle
age. The description of the clinico-pathological
syndrome by the Bavarian psychiatrist, Alois
Alzheimer, in 1906 established a neuropatho-
logical phenotype that has enabled considerable
diagnostic specificity, although until recently

only at the end of the patient’s life. The micro-
scopic lesions that Alzheimer called attention
to—senile (amyloid) plaques and neurofibril-
lary tangles—have also provided a crucial
starting point for approaching molecular
pathogenesis. Indeed, the principal reasons
that substantial progress toward deciphering
the disease has accrued are its high prevalence
and the robustness of its histological signature.

Not surprisingly, the study of Alzheimer’s
disease has had its share of controversy. Given
the cytological and biochemical complexity of
the disorder, it has been difficult to come to
agreement about the temporal sequence of
events that leads to the dementia and which
steps are most amenable to intervention.
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However, in recent years, a considerable consen-
sus has developed that certain molecular events
in the brain occur years or even decades prior to
the first symptoms, and a rough outline of the
pathogenic cascade has emerged. Although
our understanding is certainly incomplete,
advances in the field have led to the design of
mechanism-based therapeutics that are now
undergoing the painstaking process of clinical
evaluation.

PROTEIN CHEMICAL NATURE OF THE
DIAGNOSTIC BRAIN LESIONS

Progress in elucidating the biology of AD first
arose from the compositional analyses of amy-
loid plaques and neurofibrillary tangles in the
mid-1980s. Attempts to isolate the subunit
proteins of these lesions were met with some
skepticism, as it was argued that the plaques
and tangles might be end-stage lesions that
would provide little useful information about
etiology and early pathogenesis. It has become
increasingly apparent that this concern was
ill-founded.

The amyloid deposits found in meningo-
cerebral blood vessels and neuritic plaques in
AD are composed of extracellular fibrils of the
amyloid b-proteins (Ab) (Glenner and Wong
1984a; Masters et al. 1985). Although these
deposits contain skeins of insoluble amyloid
fibrils (8–10 nm in diameter), these are inter-
mixed with a poorly defined array of nonfibril-
lar (“amorphous”) forms of the peptide. Once it
was established by protein sequencing of iso-
lated amyloid deposits that Ab was the subunit
protein of both vascular amyloid (Glenner and
Wong 1984a) and plaque cores (Masters et al.
1985), immunohistochemistry with antibodies
to Ab revealed innumerable plaque-like depos-
its in AD brain tissue that appeared to lack the
surrounding dystrophic neurites and altered
microglia and astrocytes which are features of
the neuritic plaques. Such lesions, referred to
as “diffuse” or “preamyloid” plaques, represent
Ab deposits that are mostly in a nonfibrillar,
apparently granular form in the neuropil (Taglia-
vini et al. 1988; Yamaguchi et al. 1988). Antibod-
ies that selectively recognize the carboxyl termini

of various Ab peptides have shown that diffuse
(nonneuritic) deposits are largely composed
of the highly amyloidogenic 42-residue form
(Ab42) (Iwatsubo et al. 1994), which has two
extra hydrophobic amino acids (Ala and Ile) at
its carboxyl terminus compared to the more
abundantly generated Ab40 peptide. Ab deposits
do not occur simply in these two extreme forms
(diffuse and neuritic) but rather as a continuum
in which complex mixtures of fibrillar, granu-
lar, and even soluble (nonparticulate) forms of
the peptide are associated with highly varying
degrees of surrounding glial and neuritic altera-
tion. The extent of microvascular Ab deposition
in AD brains usually correlates poorly with the
amount of Ab plaques, and its importance in
contributing to the dementia remains a subject
of research (Verbeek et al. 2000).

In regions of the Alzheimer brain that are
not strongly implicated in the clinical syndrome
(e.g., cerebellum and thalamus), most Ab de-
posits are of the diffuse type and thus accom-
panied by relatively little peri-plaque gliosis
and neuritic dystrophy. A frequently voiced
concern of the “amyloid (or Ab) hypothesis”
of AD is that plaques can be found in the cortex
of apparently healthy aged subjects (who were
usually not tested for subtle cognitive dysfunc-
tion before death). However, these are primarily
diffuse plaques that appear to be less bioactive
(i.e., they lack significant surrounding neuritic
and glial cytopathology). A rough analogy has
been drawn to many cholesterol-rich fatty
streaks in the coronary arteries of individuals
who have not yet experienced clinically notice-
able cardiovascular events.

Neurofibrillary tangles are generally intra-
neuronal cytoplasmic bundles of paired, heli-
cally wound �10-nm filaments (PHFs), often
interspersed with straight �10-nm filaments
(Geser et al. 2008). Neurofibrillary tangles
usually occur in large numbers in AD brains,
particularly in entorhinal cortex, hippocampal
formation, amygdala, association cortices of
the frontal, temporal, and parietal lobes, and
certain subcortical nuclei that project to these
regions. The subunit protein of the PHF is the
microtubule-associated protein, tau. PHFs are
not limited to the tangles found in the cell
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bodies of neurons but also occur in many of the
dystrophic neurites present within and outside
of the amyloid plaques. The tau present in
PHF comprises hyperphosphorylated, relatively
insoluble forms of this normally highly soluble
cytosolic protein (Grundke-Iqbal et al. 1986;
Kosik et al. 1986; Nukina and Ihara 1986).
The tau aggregates in the tangles are often com-
plexed with ubiquitin, a feature they share with
numerous other intraneuronal protein inclu-
sions in etiologically diverse disorders such as
Parkinson’s disease and Lewy body dementia.
If this ubiquitination represents an attempt to
remove the tau filaments by way of degradation
in the proteasome, it appears to be largely
unsuccessful.

The two classical proteinaceous lesions
of AD can occur independently in humans.
Tangles composed of tau aggregates that are
biochemically similar (though usually not iden-
tical) to those in AD have been described in a
dozen or more neurodegenerative diseases in
which one generally finds no Ab deposits and
neuritic plaques. Conversely, Ab deposits
(mostly of the diffuse type) can be seen in
aged “normal” cortex in the virtual absence of
tangles. There are some cases of AD itself that
are “tangle-poor,” that is, very few neurofibril-
lary tangles are found in the neocortex despite
abundant Ab plaques (Terry et al. 1987). In
many such cases, one finds an alternate form
of neuronal inclusion, the Lewy body, com-
posed principally of fibrils ofa-synuclein (Han-
sen et al. 1993). The fact that neurofibrillary
tangles composed of altered, aggregated forms
of tau protein occur in disorders (e.g., subacute
sclerosing panencephalitis, Kuf ’s disease, and
progressive supranuclear palsy) in the absence
of Ab deposition suggests that tangles can arise
in the course of a variety of etiologically distinct
neuronal insults.

Ab IS GENERATED BY REGULATED
PROTEOLYSIS OF A LARGE
PRECURSOR PROTEIN

The purification and partial sequencing of the
Ab protein from meningovascular amyloid
deposits in AD (Glenner and Wong 1984b)

and Down’s syndrome (Glenner and Wong
1984b) enabled the subsequent cloning of the
gene encoding the b-amyloid precursor protein
(APP) (Kang et al. 1987). Ab is derived from
APP by sequential proteolytic cleavages by
enzymes generally referred to as b-secretase
and g-secretase. APP comprises a group of
ubiquitously expressed polypeptides whose
heterogeneity arises from both alternative exon
splicing and posttranslational modifications
(e.g., N- and O-linked glycosylation, phosphor-
ylation, and sulfation) (Weidemann et al. 1989).
Deletion of the APP gene in mice results in
neither early mortality nor appreciable early
morbidity, although cerebral gliosis, changes
in locomotor and cognitive behaviors and other
deficits develop with age (Zheng et al. 1995;
Ring et al. 2007), and knockdown of APP in
rat embryos impairs radial glial-guided migra-
tion of immature neurons during cortical devel-
opment (Young-Pearse et al. 2007). The lack
of a lethal phenotype from APP deletion pre-
sumably results from mammals expressing two
closely homologous Type 1 glycoproteins, the
amyloid precursor-like proteins (APLPs)
(Wasco et al. 1992; Slunt et al. 1994).

The recognition that the last 12–14 residues
of Ab derived from the transmembrane region
of APP gave rise to a conundrum: How could
Ab be found as a free peptide in the extracellular
amyloid deposits? It was generally assumed that
neurons would need to undergo an initial injury
to their membranes to allow the unknown pro-
tease that creates the carboxyl terminus of Ab
(g-secretase) to access the intramembrane re-
gion of APP. In contrast, it was discovered in
1992 that Ab is constitutively secreted by
healthy cells throughout life and normally cir-
culates in the cerebrospinal fluid (CSF) and
plasma of humans and lower mammals (Haass
et al. 1992; Seubert et al. 1992; Shoji et al. 1992).
APP holoproteins undergo alternative process-
ing events (Fig. 1).

The most common scission occurs between
residues 16 and 17 of the Ab region (12 residues
amino-terminal to the transmembrane do-
main) and is affected by one of the a-secretases,
which are members of the ADAM family of
membrane-anchored metalloproteases (Sisodia
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1992; Buxbaum et al. 1998; Kuhn et al. 2010).
The soluble ectodomain region (APPs-a) is
released into vesicle lumens and from the cell
surface, leaving behind a membrane-retained
carboxy terminal fragment (CTF) of 83 amino
acids (C83) (Fig. 1). Some APP holoproteins
that do not undergo a-secretase cleavage may
instead be cut by b-secretase, particularly in
neurons, releasing a truncated form of APPs

(APPs-b) from the cell (Seubert et al. 1993)
and leaving a 99-residue CTF (C99) in the
membrane (Fig. 1). C99 can subsequently be
cleaved by the unusual proteolytic activity
referred to as g-secretase to release Ab into
vesicle lumens and extracellular fluid. C83
can also undergo cleavage by g-secretase to
generate a peptide (p3) comprising the latter
two-thirds of Ab. In most cells, a much smaller
portion of total cellular APP undergoes cleavage

by b- than by a-secretase. The b-secretase that
generates the principal amino terminus of Ab
(aspartate-1) is a single-transmembrane aspar-
tyl protease (BACE) with its active site in its
ectodomain (Sinha et al. 1999; Vassar et al.
1999; Yan et al. 1999).

Several functions have been attributed to
the APP ectodomain, including the inhibition
of certain serine proteases (in the case of those
splice forms with a Kunitz protease inhibitor
motif ), enhancement of cell–cell and cell–
substrate adhesion, neuritotrophic and other
growth-promoting effects, and neuroprotective
properties (Anliker and Muller 2006; Zheng and
Koo 2006). The hydrophilic APP intracellular
domain (AICD) that is released into the cyto-
plasm by the intramembrane proteolysis of
C83 or C99 (Fig. 1) could have a signaling func-
tion (analogous to another a- and g-secretase
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Figure 1. Schematic diagrams of the b-amyloid precursor protein (APP) and its principal metabolic derivatives.
The upper diagram depicts the largest of the known APP alternate splice forms, comprising 770 amino acids.
Regions of interest are indicated at their correct relative positions. A 17-residue signal peptide occurs at the
amino terminus (box with vertical lines). Two alternatively spliced exons of 56 and 19 amino acids are inserted
at residue 289; the first contains a serine protease inhibitor domain of the Kunitz type (KPI). A single
membrane-spanning domain (TM) at amino acids 700–723 is indicated by the vertical dotted lines. The amy-
loidb-protein (Ab) fragment includes 28 residues just outside the membrane plus the first 12–14 residues of the
transmembrane domain. In the middle diagram, the arrow indicates the site (after residue 687; same site as the
white dot in the Ab region of APP in the upper diagram) of a constitutive proteolytic cleavage made by pro-
tease(s) designated a-secretase that enables secretion of the large, soluble ectodomain of APP (APPs- a) into
the medium and retention of the 83 residue carboxy-terminal fragment in the membrane. The C83 fragment
can undergo cleavage by protease called g-secretase at residue 711 or residue 713 to release the p3 peptides.
The lower diagram depicts the alternative proteolytic cleavage after residue 671 by enzyme called b-secretase
that results in the secretion of the slightly truncated APPs- bmolecule and the retention of a 99-residue carboxy-
terminal fragment. The C99 fragment can also undergo heterogenous cleavages by g-secretase to release the
Ab peptides.
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substrate, Notch), but putative activities of this
type have not been widely confirmed (Hebert
et al. 2006). No evidence has emerged that a
fundamental function of APP is lost in AD
patients. Instead, AD-causing APP mutations
are all clustered near the secretase processing
sites and seem to act by a gain-of-toxic-function
mechanism, namely the increased production
of the neurotoxic Ab fragment.

THE GENETICS OF ALZHEIMER’S DISEASE

Estimates of the proportion of AD cases that are
genetically based have varied widely from as low
as 10% to as high as 40% or 50%, and some
investigators believe that, in the fullness of
time, virtually all cases will be shown to have
some genetic determinants. The discovery that
the 14 allele of apolipoprotein E is a normal
polymorphism that greatly increases the risk
of AD (Strittmatter et al. 1993) underscores
that most genetic factors predisposing to AD
do not occur in a simple medelian pattern
and are thus difficult to identify in genetic
epidemiological studies. There are four widely
confirmed genes in which mutations or poly-
morphisms result in AD, and numerous addi-
tional candidate genes (e.g., clusterin [Apo J];
complement receptor 1) are in various stages
of confirmation. Missense mutations in APP
account for a tiny fraction (far less than
0.01%) of all Alzheimer’s cases, but they appear
to be informative about the pathogenic mecha-
nisms of AD in general. Inheritance of one or
two 14 alleles of ApoE is by far the most preva-
lent genetic factor predisposing to AD (Saun-
ders et al. 1993; Strittmatter et al. 1993),
accounting for upward of 30% of cases. Never-
theless, some humans homozygous for ApoE4
still show no AD symptoms in their ninth dec-
ade. The third and fourth genes implicated in
familial forms of AD are presenilin 1 (PS1)
and presenilin 2 (PS2); dominantly inherited
missense mutations result in aggressive disease,
with clinical onset between ages �40 and �65
(Levy-Lahad et al. 1995; Rogaev et al. 1995;
Sherrington et al. 1995).

Despite the prominence of tau accumula-
tion in neurofibrillary tangles and dystrophic

neurites, the tau gene has not been found to
be mutant in familial AD. Instead, mutations
in tau cause a form of frontotemporal dementia
(Hong et al. 1998; Hutton et al. 1998; Spillantini
et al. 1998). The disorder, which generally
occurs without amyloid deposits, is character-
ized by widespread tangle formation associated
with specific biochemical alterations in the
microtubule-binding properties of the mutant
tau (Lee et al. 2001). The discovery of tau muta-
tions in this distinct form of dementia has
shown that severe neurofibrillary tangle forma-
tion does not lead to secondary accumulation of
Ab. Both APP and presenilin mutations in AD
and tau mutations in frontotemporal dementia
support the view that the profound alteration of
wild-type tau in AD can follow Ab accumula-
tion, but not vice versa.

GENOTYPE-TO-PHENOTYPE
RELATIONSHIPS IN FAMILIAL AD

Cultured cells and transgenic mice have been
used to model the effects of each of the four
genes that have been unequivocally implicated
in familial AD (Table 1). In all cases, inherited
alterations in the gene products have been
linked to increases in the production and/or
deposition of Ab. This work provides the

Table 1. Genetic factors predisposing to AD: relation-
ships to the b-amyloid phenotype

Chromosome Gene defect Phenotype

21 bAPP mutations Increased
productions
of all Ab
peptides or
Ab42 peptides

19 ApoE4
polymorphism

Increased
density of
Ab40 plaques
and vascular
deposits

14 Presenilin 1
mutations

Increased
production of
Ab42 peptides

1 Presenilin 2
mutations

Increased
production of
Ab42 peptides
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strongest support for the hypothesis that cere-
bral Ab accumulation can be causative of AD.
The APP gene can cause AD in two distinct
ways: via overexpression because of increased
dosage of the wild-type gene (e.g., in trisomy
21 [Down’s syndrome] and in patients with
APP microduplications on chromosome 21q)
or else via missense mutations that increase
the amyloidogenic cleavages of APP by either
b- or g-secretase. In Down’s syndrome, a life-
long increase in APP expression and the resul-
tant overproduction of both Ab40 and Ab42

peptides (Rumble et al. 1989; Tokuda et al.
1997) is responsible for the appearance of
many diffuse plaques as early as age 12. Down’s
subjects usually develop diffuse plaques com-
posed solely of Ab42 in their teens and early
20s, with subsequent accrual of Ab40 peptides
onto these plaques and the gradual appearance
of surrounding microgliosis, astrocytosis,
neuritic dystrophy, and neurofibrillary tangles
beginning in their 20s or 30s (Mann et al.
1995; Lemere et al. 1996a).

The more than 20 known APP missense
mutations that cause AD are clustered at the
b-secretase cleavage site, just after the g-
secretase site, or else in the middle of the Ab
region (Fig. 2). A double missense mutation
immediately amino-terminal to Ab allows

increased cleavage by b-secretase. Mutations
occurring after the g-secretase cleavage site
enhance the relative production of the longer
and more self-aggregating Ab42 peptide. Muta-
tions within Ab (Levy et al. 1990; Hendriks et al.
1992) generally enhance the aggregation of the
peptide. Importantly, no AD-causing muta-
tions in the APP polypeptide away from the
Ab region have been documented.

The disease-promoting mechanism of in-
heriting one or two ApoE4 alleles is not settled.
Considerable evidence suggests that this iso-
form leads to decreased clearance and/or
enhanced aggregation of Ab in the brain
(Rebeck et al. 1993; Schmechel et al. 1993; Ma
et al. 1994; Evans et al. 1995). A decrease in
Ab deposits occurs when APP transgenic mice
are crossed with mice lacking ApoE (Bales
et al. 1997). When these offspring are then
crossed with mice expressing human ApoE3
or ApoE4, both resultant genotypes show
more Ab deposits than the mice lacking ApoE,
but the ApoE4-expressing mice show signifi-
cantly more than those with ApoE3 (Holtzman
et al. 2000). Other possible mechanisms of the
effect of ApoE4 in promoting the AD pheno-
type have been proposed (Mahley and Huang
2009). However, the observation in humans
that not only parenchymal amyloid deposits
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Figure 2. bAPP mutations genetically linked to familial Alzheimer’s disease or related disorders. The sequence
within APP that contains the Ab and transmembrane region is expanded and shown by the single-letter amino
acid code. The underlined residues represent the Ab1-42 peptide. The vertical broken lines indicate the location
of the transmembrane domain. The bold letters below the sequence indicate the currently known missense
mutations identified in certain patients with familial Alzheimer’s disease or hereditary cerebral hemorrhage
with amyloidosis. The family with the AG92G mutation can experience cerebral hemorrhages from amyloid
angiopathy and/or Alzheimer’s disease as the phenotypes. Three-digit numbers refer to the residue number
according to the bAPP770 isoform.
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but also those in meningeal vessels (and some-
times just the latter) accumulate as a function of
rising ApoE4 gene dosage (Greenberg et al.
1995) strongly suggests that ApoE4 serves to
increase tissue Ab deposition.

When presenilin 1 and 2 were cloned in
1995, the mechanism by which missense muta-
tions in these polytopic proteins produced AD
was open and not necessarily expected to
involve a change in Ab economy. However, it
soon became known that PS 1 or 2 missense
mutations increase the ratio of Ab42 to Ab40

in the patients’ plasma and cultured fibroblast
media (Scheuner et al. 1996). Modeling of these
mutations in cultured cells and mice confirmed
this result (Borchelt et al. 1996; Citron et al.
1997). Crossing mice transgenic for mutant
APP with mice expressing mutant PS1 leads to
an accelerated AD-like phenotype, with Ab42

plaques occurring as early as 3 mo of age (Hol-
comb et al. 1998). Moreover, the ability of PS
mutations to selectively enhance Ab42 deposi-
tion has been documented directly in patients’
brains (Lemere et al. 1996b; Mann et al. 1996).

PS1 and PS2 each have nine transmembrane
domains (TMD) and occur in ER, Golgi, and
other vesicles in the secretory pathway, plasma
membrane, and endosomes. Presenilin exists
largely as a mature heterodimer of endoproteo-
lytically generated fragments (NTF plus CTF)
(Thinakaran et al. 1996). Studies in Caenorhab-
ditis elegans led to the recognition that its prese-
nilin (called SEL-12) is a facilitator of the Notch
intercellular signaling pathway (Levitan et al.
1996). Accordingly, deleting the presenilin 1
gene in mouse causes profound Notch hypo-
function (i.e., an embryonic lethal phenotype
that includes severely disordered somitogenesis
and axial skeletal development as well as abnor-
mal neuronal differentiation in the forebrain
[Shen et al. 1997; Wong et al. 1997]). In addi-
tion, the production of all Ab peptides is mark-
edly reduced in PS1 knockout embryos because
of a loss of g-secretase processing (De Strooper
et al. 1998). APP was found by some investiga-
tors to interact with PS1 (Weidemann et al.
1997; Xia et al. 1997), suggesting that presen-
ilin might either be a necessary cofactor of
the g-secretase reaction or might actually be

g-secretase itself. The latter possibility was
furthered by the finding that inhibiting
g-secretase activity in cells with APP pepti-
domimetic transition-state analogs suggested
that g-secretase was an aspartyl protease (Wolfe
et al. 1999a). Close inspection of the presenilin
sequence revealed two aspartates in adjacent
TMDs of all presenilins down to C. elegans,
and these flanked the cytoplasmic loop in which
presenilin is normally cleaved into its hetero-
dimer (Fig. 3). Mutation of either of the
aspartates completely prevented both this
endoproteolysis of presenilin and the g-secre-
tase processing of C99 to Ab and C83 to p3
(Wolfe et al. 1999b). These results suggested
that presenilin was a first-in-class intramem-
brane aspartyl protease that cleaves itself (an
autoactivation step) and can then cleave intra-
membrane substrates such as C83 and C99 of
APP. Separate work showed that presenilin is
also required for the normal intramembrane
cleavage of Notch following binding of its
extracellular ligand (De Strooper et al. 1999).
Consequently, mutating either one of the PS
aspartates is lethal to C. elegans (Brockhaus
et al. 1998) and all other animals. It was soon
shown that g-secretase inhibitors mimicking
the transition state of a substrate with an aspar-
tyl protease bound directly to presenilin (Esler
et al. 2000; Li et al. 2000). These and many sub-
sequent studies firmly establish presenilin as the
catalytic site of g-secretase. Thus, missense
mutations in either the protease (presenilin)
or the substrate (APP) of the g-secretase reac-
tion elevate the relative levels of Ab42 and result
in an aggressive AD phenotype. These findings
are assumed to be relevant to conventional
(“sporadic”) forms of AD, which are usually
indistinguishable neuropathologically from
cases caused by PS mutations.

GENETICALLY ENGINEERED MOUSE
MODELS OF AD

Given the many obstacles to studying disease
progression dynamically in the human brain,
significant effort has been expended to create
mouse models that replicate aspects of AD
pathogenesis. A sizable number of mouse lines
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transgenic for human APP (either without or
with human PS1 coexpression) have been gen-
erated (Games et al. 1995; Hsiao et al. 1996;
Holcomb et al. 1998; Mucke et al. 2000; Oddo
et al. 2003). Most of these models recapitulate
some but not all neuropathological features of
the human disease. Typically, Ab42/40 peptide
ratios are elevated and both diffuse and fibrillar
(neuritic) plaques appear in an age-dependent
fashion. No PHF in neurites or tangles are
observed unless mutant human tau is also over-
expressed. “Bigenic” mice expressing mutant
human APP plus human tau bearing the
P301L mutation that causes a form of fronto-
temporal dementia (Lewis et al. 2001) or “triple
transgenic” mice expressing mutations in
human APP, PS1, and tau (Oddo et al. 2003)
develop NFTs reminiscent of those seen in AD
and at a faster rate than mice expressing P301L
tau alone.

In most APP transgenic models, significant
neuronal loss is not observed (Irizarry et al.
1997). However, at least one mouse line (called

APP23) that expresses mutant human APP
shows quantifiable neuronal loss in the CA1
region of hippocampus at age 14–18 mo
(Calhoun et al. 1998). In the latter mice, Ab
is deposited almost exclusively in the form
of Thioflavin-positive (amyloid fibril–rich)
plaques (Sturchler-Pierrat et al. 1997), and the
cell loss is observed primarily in the vicinity of
such hippocampal deposits. In accord, another
study reported a reduction in neuronal density
around Thioflavin S–positive Ab deposits in
both AD brain and the brains of 12-mo-old
mice coexpressing mutant human PS1 plus
APP (Urbanc et al. 2002).

Although fibrillar Ab in mature AD plaques
may contribute to neurotoxicity, such plaques
are dynamic structures and likely act as local
reservoirs of small, diffusible oligomers (Koffie
et al. 2009). Furthermore, a mouse line trans-
genic for mutant APP took �12 mo to develop
plaques, and yet the animals showed cognitive
impairment and decreased hippocampal long-
term potentiation (LTP) from 3 mo onward
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Figure 3. Model of the role of presenilin (PS) in Notch and APP processing based on current information. Poly-
topic PS protein, which occurs principally as a cleaved heterodimer. Some Notch and APP molecules form
complexes with PS. Two aspartates (D) in TM6 and TM7 of PS are required for the cleavages of Notch and
APP within their TM domains, and these align with the respective sites of cleavage in the two substrates.
PS-mediated proteolysis of both Notch and APP is preceded by ectodomain shedding by an ADAM family pro-
tease (“a-secretase”). Alternatively, APP can undergo ectodomain shedding by b-secretase. Several motifs are
depicted in Notch: EGF-like repeats (yellow circles), LNG repeats (red diamonds), a single TM (orange box),
the RAM23 domain (blue square), a nuclear localization sequence (pink rectangle), and six cdc10/ankyrin
repeats (green ovals). Following the putative intramembranous cleavage mediated by PS, the Notch intracellular
domain is released to the nucleus to activate transcription of target genes. APP contains the Ab region (light blue
box), which is released into the lumen after sequential cleavages of APP by b-secretase and then g-secretase/PS.
The APP intracellular domain is released into the cytoplasm.
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(Moechars et al. 1999). Another APP mouse
was found to have enhanced paired pulse facil-
itation, distorted responses to high frequency
stimulation, and impaired LTP at just age 4–5
mo (Larson et al. 1999; Shinsky et al. 2002).
Analyses of other mice have confirmed mor-
phological, biochemical, and electrophysiologi-
cal changes well in advance of amyloid plaque
deposition (Mucke et al. 2000; Wu et al.
2004). In addition, studies in a C. elegans model
also suggest that small oligomers of Ab can con-
fer cytotoxicity (Cohen et al. 2006).

PREFIBRILLAR FORMS OF Ab PERTURB
SYNAPTIC FORM AND FUNCTION

Early evidence from human studies that soluble,
nonfibrillar assemblies of Ab might play a prin-
cipal role in cognitive impairment came from
analyses that showed statistical correlations
between cortical levels of soluble Ab and the
extent of synaptic loss and severity of cognitive
symptoms (Lue et al. 1999; McLean et al. 1999;
Wang et al. 1999). In such studies, the term
“soluble Ab” is an operational definition, em-
bracing all forms of Ab that remain in aqueous
solution following high-speed centrifugation of
brain extracts (Kuo et al. 1996; Lue et al. 1999;
McLean et al. 1999; Wang et al. 1999).

Experimental approaches to this concept in
the investigator’s laboratory have confirmed
that abundant SDS-stable Ab dimers (�8 kDa)
and some SDS-stable trimers (�12 kDa) are
detectable in buffer-soluble extracts of post-
mortem AD cortex (Shankar et al. 2008). We
subjected such extracts to size-exclusion chro-
matography, allowing the separation of mono-
mers (�4 kDa) from dimers. Application of
the respective SEC fractions to normal mouse
hippocampal slices showed that the dimers
potently inhibited LTP, an electrophysiological
correlate of aspects of synaptic plasticity during
learning and memory in rodents (Shankar
et al. 2008). The dimers could also facilitate
long-term synaptic depression (LTD) in the
hippocampus (Li et al. 2009). Monomers iso-
lated simultaneously from the same AD brains
were without effect. The dimers also decreased
dendritic spine density; this is relevant to

the strong correlations between AD neuropa-
thology and synaptic loss in human brains.
Monoclonal antibodies to Ab (especially, to its
free amino terminus) prevented these changes.
Insoluble amyloid plaque cores isolated form
the same AD brains did not impair LTP in
hippocampal slices unless the cores were first
solubilized in formic acid to release theirconstit-
uent dimers (Shankar et al. 2008). Importantly,
microinjection of the dimer-rich soluble AD
extracts into the cerebral ventricles of healthy
adult rats transiently impaired the memory
of a learned behavior (Shankar et al. 2008).
Further studies have recently shown that the
isolated AD brain dimers potently induce
hyperphosphorylation of endogenous tau in
rat cortical neurons, followed by a progressive
collapse of the neuritic cytoskeleton (M Jin
and DJ Selkoe, unpublished data). Knocking
down rat tau prevented the neuritic dystrophy,
whereas expressing human tau accelerated it.
Taken together, these findings support the
hypothesis that small, soluble oligomers of
human Ab are sufficient to induce several fea-
tures of the AD phenotype, including synaptic
loss, tau hyperphosphorylation, neurofibrillary
degeneration, and memory impairment, in the
absence of amyloid plaques. Moreover, earlier
in vivo studies that genetically deleted tau in
APP transgenic mice strikingly protected these
animals from Ab-mediated behavioral deficits
(Roberson et al. 2007).

Many studies employing supraphysiological
concentrations of synthetic Ab peptides in oli-
gomeric form (generally larger than dimers/
trimers) have also provided evidence of tau
alteration (Zempel et al. 2010) and various
neurotoxic effects. Because such synthetic in-
termediates can readily associate into higher
order aggregates and fibrils can in turn dissoci-
ate, it is difficult to unambiguously ascribe
cytopathological activity to a discrete species.
Nonetheless, several groups have generated
prefibrillar synthetic Ab assemblies and probed
their synaptotoxic activity. In 1998, Lambert
and colleagues presented the first experimen-
tal evidence that certain soluble, nonfibril
forms of synthetic Ab (which they called Ab-
derived diffusible ligands, or ADDLs) could be
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neurotoxic (Lambert et al. 1998). ADDLs have
been shown to cause neuronal death in culture,
to block LTP (Lambert et al. 1998; Wang et al.
2004) and to inhibit reduction of MTT by
neural cell lines (Lambert et al. 1998; Stine
et al. 2003). Apparently distinct assembly inter-
mediates of synthetic Ab termed protofibrils
(PFs) have been shown by other workers to alter
neuronal function. Synthetic PFs range from
spherical assemblies of �5 nm diameter to
short, flexible rods of up to 200 nm in length
(Harper et al. 1997; Walsh et al. 1997). Synthetic
PFs appear to behave as fibril intermediates in
vitro in that they can both form fibrils and dis-
sociate to lower molecular weight species
(Harper et al. 1999; Walsh et al. 1999). Among
other neurotoxic effects, PFs can induce an
increase in excitatory postsynaptic currents
(EPSCs) in rat cortical neurons (Hartley et al.
1999). An alternative to the use of synthetic
peptides is to analyze the conditioned media
of certain cultured cell lines that express mutant
human APP and secrete low-nanomolar
amounts of small, soluble oligomers. When
such cell-derived oligomers were injected intra-
ventricularly into healthy rats, they inhibited
hippocampal LTP (Walsh et al. 2002) and also
impaired the memory of a learned behavior
(Cleary et al. 2005). Finally, yet another
approach has been to identify—and then iso-
late—Ab assembly intermediates (e.g., a meta-
stable docamer designated Ab�56) from the
brains of certain APP transgenic mice (Lesne
et al. 2006). Ab�56 has been shown to be asso-
ciated with—and actually induce—transient
learning deficits in water maze and other mouse
behavioral assays (Lesne et al. 2006).

SEVERAL THERAPEUTIC OPPORTUNITIES
ARE EMERGING FROM THE MECHANISTIC
STUDY OF Ab

Progress in deciphering the role of the preseni-
lins in the proteolytic processing of APP, Notch
and many other single-transmembrane pro-
teins has provided a way of thinking about
the question of how Alzheimer’s disease arose
in the human population. The presenilins,
and specifically their two intramembrane

aspartates, were conserved during evolution
because they confer a strong developmental
advantage by mediating the Notch nuclear
signaling pathway that is vital for cell fate deci-
sions in all multicellular animals. But the similar
processing of another, biologically less impor-
tant substrate, APP, allows the lifelong produc-
tion of Ab, and this can lead in long-lived
hosts to the accumulation of its most hydropho-
bic and oligomer-prone form (Ab42). Because
large numbers of humans now survive long
past reproductive maturity, one sees a very sub-
stantial and rising prevalence of AD. A corollary
of the latter concept is provided by the inheri-
tance of missense mutations in either the sub-
strate (APP) or the protease (presenilin) that
biochemically accentuate—at least in relative
terms—the cleavage of APP at the Ab42-43 pep-
tide bond, producing an early-onset form of AD.

Although many questions remain unan-
swered, sufficient progress in delineating the
pathogenic cascade has been achieved to envi-
sion several discrete targets for treatment.
Inhibitors of Ab production—that is, small
compounds that cross the blood–brain barrier
and decrease but do not eliminate either b- or
g-secretase activity—could be therapeutic in
the early clinical phases of the disease, namely
in patients with minimal cognitive impairment
or mild AD, and ultimately also in presympto-
matic subjects with genetic predispositions.
In the case of g-secretase inhibitors, these could
be designed to decrease APP cleavage by some
20% to 40%, but they must do so selectively,
that is, without interfering in a quantitatively
important way with Notch processing.

An alternate approach would be to use small
molecules to bind Ab monomers and prevent
their assembly into potentially cytotoxic
oligomers or else coat the small oligomers to
mask their toxicity. However, if an antiaggre-
gating compound solely blocked amyloid fibril
formation, this could actually allow increased
accumulation of metastable intermediates such
as oligomers and might theoretically aggra-
vate the disease. One advantage of a properly
designed antioligomer agent is that one would
be targeting a purely pathological event in the
disease rather than interfering with normal
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metabolic reactions such as those of b- and
g-secretase.

A third general approach would be to
administer anti-inflammatory drugs that could
interfere with certain aspects of the responses by
microglia, astrocytes, or bone marrow–derived
macrophages that occur in the AD brain. It
would be necessary to design novel compounds
that interfere with one or more specific steps in
the Ab-induced inflammatory cascade of AD,
rather than relying on conventional anti-
inflammatory drugs that can have considerable
toxicity when administered chronically to
elderly humans.

One could also use a variety of antioxidants,
free radical scavengers, calcium channel block-
ers, and modulators of certain signal transduc-
tion pathways that might protect neurons from
the downstream effects of Ab accumulation.
The problem with this general approach may
turn out to be that there are multiple ways in
which neurons respond to Ab and the associated
inflammatory process, and blocking one or two
of these might not significantly decrease overall
neuronal dysfunction and loss. An increasingly
interesting possibility is to lower or neutralize
the effects of tau, given the striking protective
effects against the neurotoxicity of Ab that tau
knockdown has shown in cell culture and mouse
models (above). One can also consider the
administration of neurorestorative factors, for
example, neurotrophins and small compounds
mimicking their actions that might rescue syn-
apses and cell bodies undergoing active injury.
However, this approach would need to operate
successfully in the presence of ongoing new
injury from the cytotoxic effects of Ab.

Perhaps the clinically most advanced
approach to lowering the levels of Ab mono-
mers, oligomers, and amyloid deposits is active
and passive immunotherapy. This idea arose
from studies in APP transgenic mice immu-
nized with synthetic human Ab peptide, lead-
ing to a humoral response and the movement
of some of the antibodies across the blood brain
barrier into the brain parenchyma, where they
reduced both plaque burden and soluble Ab
levels (Schenk et al. 1999). A subsequent study
infusing monoclonal antibodies to Ab into

transgenic mice also led to Ab clearing (Bard
et al. 2000). Many follow-up preclinical studies
have robustly confirmed these effects and shown
that abnormal behavior in APP mice can also be
ameliorated. In one study, acute administration
of a single injection of an antibody appeared to
return certain cognitive deficits to baseline in
older mice, obviously without reducing plaque
burden (Dodart et al. 2002). The precise mech-
anisms of immunotherapy remain unclear but
likely involve both the stimulation of plaque
clearance by local microglia and/or exogenous
macrophages (Bard et al. 2000) and the binding
and neutralization of soluble forms of Ab in
the brain (Shankar et al Nat Med 2008) and
perhaps in the systemic circulation (DeMattos
et al. 2002). Success in APP transgenic mouse
models led to initial human trials of active vac-
cination with a full-length Ab42 peptide (plus
adjuvant), but in a phase 2 trial, 6% of the
300 immunized subjects developed a self-
limited sterile meningo-encephalitis, apparently
because of the entry of T-cells auto-reactive to
Ab through the blood–brain barrier. Although
this trial had to be halted, some subjects were
followed and showed limited evidence of a
biological effect, namely fewer declines than
placebo-treated subjects on certain memory
tests that correlated with their residual Ab anti-
body titers, plus a lowering of CSF tau levels in a
small subset of recipients (Gilman et al. 2005).
Given this mixed outcome, the next clinical
approach was passive infusion of antibodies
directed to the free Ab amino terminus, thus
avoiding side effects of active vaccination. An
18-mo phase 2 trial again showed mixed results:
(1) less declines in some cognitive measures
in those who received all six antibody doses,
again with lowering of mean CSF tau levels in
the few subjects who had two lumbar punctures;
and (2) the development in a small but signifi-
cant percentage of a transient neuroradiological
change called vasogenic edema, associated with
transient worsening of the degree of dementia
in a minority of these radiologically affected
patients (Salloway et al. 2009). This amino-
terminal antibody is now being tested in four
large Phase 3 trials, and other passive and active
immunotherapy trials are underway.
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In the future, it is probable that individuals
reaching their 50s or beyond will be offered a
specific risk-assessment profile to determine
their likelihood of developing AD. Such an
assessment, modeled on that now widely used
to judge the risk of serious atherosclerotic dis-
ease, would include inquiry about a positive
family history of AD, identification of specific
predisposing genetic factors, structural and
functional brain imaging (including amyloid
PET scans) to detect evidence of presympto-
matic lesions, and measurement of Ab42, tau,
and other markers of the neuropathology in
CSF and perhaps (in the case of Ab) even in
blood. Based on further epidemiologic experi-
ence with such assessment measures in large
populations of healthy elderly, MCI and AD
subjects, it should be possible to estimate—first
crudely and later more accurately—the likeli-
hood that an individual will develop AD. If
this can be accomplished, then those at appre-
ciable risk could be offered preventative treat-
ments, assuming one or more of the agents
contemplated in the previous paragraphs prove
efficacious and safe. Although the achievement
of an integrated diagnostic and therapeutic
approach to this complex and devastating dis-
order may seem remote, the current rate of
scientific progress and the likelihood of many
additional clinical trials suggest that some level
of practical success may come sooner than one
might think.
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