Lipid Metabolism

Lipid: a major storage form of metabolic energy

Chapter 19 Opener Fundamentals of Biochemistry, 2/e

Fatty acids

- 1. 지방산의 주요 생리적 기능
 - (1) 인지질 (phospholipid)과 당지질 (glycolipid)들의 구성성분
 - (2) 유도체들은 호르몬들이나 세포 내 전령 (intracellular messenger)로 작용

(3) triacylglycerol과 같은 에너지 저장물질

2. 구조

일반적인 구조식: CH₃(CH₂)nCOOH 포화지방산: no C-C double bonds 불포화지방산: double bonds

명명법; common name (<u>http://www.cyberlipid.org/fa/acid0001.htm</u>) systematic name: n-octadecan<u>oic</u> acid(stearic acid) octadec<u>enoic</u> acid (oleate) octadeca<u>dienoic</u> acid octadeca<u>trienoic</u> acid numbering: carboxyl 말단부터 시작

생물계에 존재하는 지방산들은 전형적으로는 14와 24개 사이의 짝수로 존재 그 중에서도 16과 18개의 탄소를 가진 것들이 가장 많다.

Fatty acids: carboxylic acids with long-chain hydrocarbon side groups <14 or >20 are uncommon

able 9-1 The Common Biological Fatty Acids						
Symbol ^a	Common Name	Systematic Name	Systematic Name Structure			
Saturated f	atty acids					
12:0	Lauric acid	Dodecanoic acid	$CH_3(CH_2)_{10}COOH$	44.2		
14:0	Myristic acid	Tetradecanoic acid	CH ₃ (CH ₂) ₁₂ COOH	52		
16:0	Palmitic acid	Hexadecanoic acid	CH ₃ (CH ₂) ₁₄ COOH	63.1		
18:0	Stearic acid	Octadecanoic acid	CH ₃ (CH ₂) ₁₆ COOH	69.1		
20:0	Arachidic acid	Eicosanoic acid	CH ₃ (CH ₂) ₁₈ COOH	75.4		
22:0	Behenic acid	Docosanoic acid	CH ₃ (CH ₂) ₂₀ COOH	81		
24:0	Lignoceric acid	Tetracosanoic acid	CH ₃ (CH ₂) ₂₂ COOH	84.2		
Unsaturated	d fatty acids (all dou	ble bonds are cis)				
16:1 <i>n</i> -7	Palmitoleic acid	9-Hexadecenoic acid	CH ₃ (CH ₂) ₅ CH=CH(CH ₂) ₇ COOH	-0.5		
18:1 <i>n</i> -9	Oleic acid	9-Octadecenoic acid	CH ₃ (CH ₂) ₇ CH=CH(CH ₂) ₇ COOH	13.2		
18:2 <i>n</i> -6	Linoleic acid	9,12-Octadecadienoic acid	CH ₃ (CH ₂) ₄ (CH=CHCH ₂) ₂ (CH ₂) ₆ COOH	-9		
18:3n-3	α-Linolenic acid	9,12,15-Octadecatrienoic acid	CH ₃ CH ₂ (CH=CHCH ₂) ₃ (CH ₂) ₆ COOH	-17		
18:3 <i>n</i> -6	γ-Linolenic acid	6,9,12-Octadecatrienoic acid	CH ₃ (CH ₂) ₄ (CH=CHCH ₂) ₃ (CH ₂) ₃ COOH			
20:4n-6	Arachidonic acid	5,8,11,14-Eicosatetraenoic acid	CH ₃ (CH ₂) ₄ (CH=CHCH ₂) ₄ (CH ₂) ₂ COOH	-49.5		
20:5n-3	EPA	5,8,11,14,17-Eicosapentaenoic acid	CH ₃ CH ₂ (CH=CHCH ₂) ₅ (CH ₂) ₂ COOH	-54		
22:6n-3	DHA	4,7,10,13,16,19-Docosohexenoic acid	CH ₃ CH ₂ (CH=CHCH ₂) ₆ CH ₂ COOH			
$24 \cdot 1n - 9$	Nervonic acid	15-Tetracosenoic acid	$CH_2(CH_2)_2CH = CH(CH_2)_{12}COOH$	30		

^{*a*}Number of carbon atoms: Number of double bonds. For unsaturated fatty acids, the quantity "n-x" indicates the position of the last double bond in the fatty acid, where n is its number of C atoms, and x is the position of the last double-bonded C atom counting from the methyl terminal (ω) end. Source: Dawson, R.M.C., Elliott, D.C., Elliott, W.H., and Jones, K.M., Data for Biochemical Research (3rd ed.), Chapter 8, Clarendon Press (1986).

Table 9-1 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Lipid digestion, absorption, and transport

Triacylglycerol: long term *E* storage reduced, nonpolar, anhydrous

Digestion & absorption in small intestine Bile acids (syn by liver, stored in gall bladder, secreted into small intestine) Increase lipid-water interface

 $R_1 = H$

 $R_2 = OH$ $R_2 = NH - CH_2 - COOH$ $R_2 = NH - CH_2 - CH_2 - SO_3H$

Cholic acid Glycocholic acid Taurocholic acid

 $R_1 = OH$

Chenodeoxycholic acid Glycochenodeoxycholic acid Taurochenodeoxycholic acid

Figure 19-1 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Lipid transport

in complex with proteins: lipoproteins

nonpolar core of triacylglycerols and cholesteryl esters surrounded by an amphiphilic coating of protein, phospholipid, and cholesterol

	Chylomicrons	VLDL	IDL	LDL	HDL
Density $(g \cdot cm^{-3})$	< 0.95	<1.006	1.006-1.019	1.019-1.063	1.063-1.210
Particle diameter (Å)	750-12,000	300-800	250-350	180-250	50-120
Particle mass (kD)	400,000	10,000-80,000	5000-10,000	2300	175-360
% Protein ^a	1.5-2.5	5-10	15-20	20-25	40-55
% Phospholipids ^a	7–9	15-20	22	15-20	20-35
% Free cholesterol ^a	1–3	5-10	8	7-10	3–4
% Triacylglycerols ^b	84-89	50-65	22	7-10	3–5
% Cholesteryl esters ^b	3–5	10-15	30	35-40	12
Major apolipoproteins	A-I, A-II, B-48, C-I,	B-100, C-I, C-II,	B-100, C-I, C-II,	B-100	A-I, A-II, C-I, C-II,
	C-II, C-III, E	C-III, E	C-III, E		C-III, D, E

Table 19-1 Characteristics of the Major Classes of Lipoproteins in Human Plasma.

^aSurface components.

^bCore lipids.

Apolipoproteins: at least nine are known

Table 19-1 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

LDL

Figure 19-5 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Human apoA-1

Figure 19-6b Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Figure 19-7 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

TONSILS

Defense against bacteria and other

RIGHT LYMPHATIC DUCT

Drains right upper portion of the body

THYMUS GLAND

Site where certain white blood cells acquire means to chemically recognize specific foreign invaders

THORACIC DUCT

Drains most of the body

SPLEEN.

Site where antibodies are manufactured; disposal site for old red blood cells and foreign debris; site of red blood cell formation in the embryo

SOME OF THE LYMPH VESSELS

Return excess interstitial fluid and reclaimable solutes to the blood

SOME OF THE LYMPH NODES

Filter bacteria and many other agents of disease from lymph

BONE MARROW

Marrow in some bones are production sites for infectionfighting blood cells (as well as red blood cells and platelets)

LPL: found in endothelial cells lining the capillaries

Receptor-mediated endocytosis of LDL

HDL transports cholesterol from the tissue to the liver The liver is the only organ capable of disposing of significant quantities of cholesterol (by its conversion to bile acids)

LDL: receptor-mediated endocytosis HDL: SR-BI (cell-surface receptor)-mediated

Fatty acid oxidation occur in mitochondria

Figure 19-9 Fundamentals of Biochemistry, 2 © 2006 John Wiley & Sons

Fatty acid activation

long chain fatty acid

Figure 19-10 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Transport across mito membrane

Medium chain: direct transfer & activation to acyl-CoA Long chain: carnitine mediated

Figure 19-12 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Ketone bodies

Ketogenesis: acetyl-CoA to acetoacetate or D- β -hydroxybutyrate Important metabolic fuels for heart & skeletal muscle During starvation the brain depends on ketone bodies

Acetone

mbered figure pg 649 Fundamentals of Biochemistry, 2/e

Acetoacetate

Ketone bodies to acetyl-CoA

ketosis


```
OH
     CH3-C-CH2-CO2
  D-B-Hydroxybutyrate
                  - NAD<sup>+</sup>
                β-hydroxybutyrate dehydrogenase
                  \vdash NADH + H<sup>+</sup>
          0
   CH3-CH2-CO2-
     Acetoacetate
                                          0
                    O<sub>2</sub>C-CH<sub>2</sub>-CH<sub>2</sub>-C-SCoA
                            Succinyl-CoA
               3-ketoacyl-CoA transferase
                 → 0<sub>2</sub>C - CH<sub>2</sub> - CH<sub>2</sub> - CO<sub>2</sub>
                           Succinate
       0
                    0
CH<sub>3</sub>-C-CH<sub>2</sub>-C-SCoA
   Acetoacetyl-CoA
                   - H-SCoA
               thiolase
    2 CH<sub>3</sub>-C-SCoA
        Acetyl-CoA
Figure 19-22 Fundamentals of Biochemistry, 2/e
© 2006 John Wiley & Sons
```

Fatty acid biosynthesis Reverse of β -oxidation process

Figure 19-23 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Acetyl group transfer from mito to cytosol

tricarboxylate transport system ATP-citrate lyase

Mitochondrion Inner Cytosol CO2-Citrate + CoA + ATP \rightarrow mitochondrial membrane CO2 CH₂ acetyl-CoA + oxaloacetate + ADP + Pi CH₂ HO-C-CO2 Tricarboxylate HO-C-CO2- Citrate Citrate transport CH₂ system CH₂ CO2 ATP + H - SCoA CO2-**ATP-citrate lyase** H - SCoA - \rightarrow ADP + P_i + CH₃ - C - SCoA citrate synthase Ç02 0 CH3-C-SCOA $\dot{c} = 0$ Oxaloacetate Acetyl CoA CH₂ CO2 CO2-NADH + H⁺ ċ=0 Oxaloacetate malate dehydrogenase → NAD⁺ CH₂ CO2-CO2 Malate HOċ—н ADP + Pi -CH₂ pyruvate carboxylase CO2 HCO3⁻⁺ ATP - NADP+ malic enzyme → NADPH + CO₂ CO2-CO2 ċ=0 $\dot{C} = 0$ Pyruvate **Pyruvate** CH₃ CH₃

Figure 19-24 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Acetyl-CoA carboxylase (ACC) The first committed step of fatty acid synthesis & r.d.s. Allosteric and covalent regulation CO₂ activation and carboxylation

Unnumbered figure pg 652 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Mammalian ACC: two isoforms

adipose tissue, α -ACC; heart muscle, β -ACC; liver, both Heart muscle does not synthesize fatty acids What is the function of β -ACC?

Malonyl-CoA strongly inhibits the mito import of fatty acyl-CoA

E. coli ACC

regulated by guanine nucleotides why? Fatty acid synthesis is coordinated with cell growth

Fatty acid synthase

E. coli by individual enzymes
Plant: in chloroplast by individual enzymes
Yeast: cytosolic 2500-kD multifunctional enzyme α6β6
Animal: 534-kD consisting of two identical polypeptide chains

Acyl-carrier protein (ACP) in *E. coli* 10-kD polypeptide in animal a part of the multifunctional complex

Acetoacetvl-ACP Unnumbered figure pg 654 Fundamentals of Biochemistry, 2/4 © 2006 John Wiley & Sons

palmitate + 14 NADP+ + 8 CoA + 6 H_2O + 7 ADP + 7 Pi

Animal fatty acid synthase

Malignant tissues: high levels of fatty acid synthase An inhibitor of fatty acid synthesis: possible anticancer agent

Triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol) antibacterial agent inhibits enoyl-ACP reductase emergence of resistant strains

Box 19-3 figure 2 Fundamentals of Biochemistry, 2/e

Synthesis of triacylglycerols

Glycerogenesis

important for triacylglycerol biosynthesis dihydroxyacetone phosphate and glycerol-3-phosphate from glycolysis or gluconeogenesis

Regulation of Fatty acid metabolism

Figure 19-32 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Lipase

Lipoprotein lipase (LPL)

Lipoprotein lipase is found in vascular endothelium. It is activated by insulin, ACTH, TSH, glucagon and thyroid hormone. Its activity is enhanced by heparin. As discussed above, lipoprotein lipase hydrolyzes CM and VLDL to free fatty acids and glycerol and VLDL-remnants, respectively. Apolipoprotein C is essential for activation of LPL.

Hepatic lipase

This enzyme hydrolyzes surface phospholipids on lipoproteins and is responsible for converting VLDL to LDL.

Hormone sensitive lipase

This enzyme is responsible for lipolysis (mobilization of triglycerides from adipose tissue to yield free fatty acids and glycerol). The enzyme is stimulated by catecholamines, growth hormone, thyroxine, corticosteroids and prostaglandins. It is inhibited by insulin. Fatty acids are transported to the liver (free or albumin-bound), where they are taken up and used for energy (beta oxidation), combined with triglycerides to form VLDL or incorporated into ketones. Therefore, lipolysis will increase VLDL production.

Synthesis of other lipids

Membrane lipids and signal molecules

Synthesis in membranes of the cytosolic side of ER & then transport to their destinations Gylcerolipids & sphingolipids

Biosynthesis of sphingolipids

Most are glycolipids: carbohydrate units to the C1-OH Biosynthetic precursors: palmitoyl-CoA & serine

R - C - NH - C - H

он н

 $\dot{C}H - \dot{C} = \dot{C} - (CH_2)_{12} - CH_3$

Sphingomyelin

-O-CH₂-CH₂-N(CH₃)₃

Sphingolipid degradation and Lipid storage diseases

Eicosanoids from arachidonic acid (p 247, Fig. 9-12)

Prostaglandins

Prostaglandin H2 synthase (COX) Cyclooxygenase & peroxidase Two isoforms: COX-1 & COX-2 COX-1: constitutive expression in most tissue COX-2: certain tissue in response to inflammatory stimuli

Acetylation of a Ser residue

Finding of COX-3: a target of acetaminophen? Poor binding of acetaminophen to COX-1 & -2

Celecoxib (Celebrex)

Rofecoxib (Vioxx)

Cholesterol metabolism

<u>Biosynthesis</u> HMG-CoA synthesis in cytosol: thiolase & HMG-CoA synthase (in mitochondria for ketone bodies)

Mevalonate (C6): by HMG-CoA reductase the rate limiting step

Isopentenyl pyrophosphate (C5)

$$CH_3$$

|
 $CH_2=C-CH=CH_2$

C

An isoprene unit

Figure 19-38 Fundamentals of Biochem © 2006 John Wiley & Sons

Isopentenyl pyrophosphate

Unnumbered figure pg 672a Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Isopentenyl pyrophosphate

isopentenyl pyrophosphate isomerase

Dimethylallyl pyrophosphate Unnumbered figure pg 672b F © 2006 John Wiley & Sons atals of Bio

Unnumbered figure pg 672c Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Figure 19-41 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Regulation of cholesterol synthesis

The main regulation: HMG-CoA reductase

<u>Short-term regulation</u> Competitive inhibition Allosteric effects Covalent modification: phosphorylation by AMPK

AMPK http://www.indstate.edu/thcme/mwking/ampk.html

http://www.med.unibs.it/~marchesi/cholest.html

Long-term control: gene expression

the primary regulation Increased as much as 200-fold along with >20 other genes for synthesis and uptake

Sterol regulatory element (SRE) SREBP: regulatory & bHLH domains SCAP: SREBP cleavage-activating protein sterol-sensing domain & WD repeat

Activation procedure

Low cholesterol in ER SCAP conformation change Transport to golgi apparatus via membranous vesicles Site-1 protease Site-2 protease bHLH binding to SRE

HMG-CoA reductase inhibitors: statins

Hypercholesterolemia Competitive inhibitor of HMG-CoA reductase

http://www.clinsci.org/cs/105/0251/cs1050251f03.htm?resolution=HIGH

Cholesterol transport and atherosclerosis

Cellular cholesterol concentration depends on the rate of cholesterol synthesis the ability of cell to absorb cholesterol from circulating lipoproteins

High LDL is a strong risk factor for cardiovascular disease Accumulation of lipid in vessel walls: Atherosclerosis Myocardial infarction (heart attack) Stroke (brain)

Figure 19-44 Fundamentals of Biochemistry, 2/e

Role of the LDL receptors

familial hypercholesterolemia (FH) Long-term ingestion of a high-fat/high-cholesterol diet

Cholesterol efflux from cells

LDL receptor: FH ABCA1 (ATP-cassette binding protein A1): Tangier disease no HDL synthesis accumulation of cholesteryl ester in macrophages develop atherosclerosis

