Lipid Metabolism



Lipid: a major storage form of metabolic energy




Fatty acids
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Fatty acids: carboxylic acids with long-chain hydrocarbon side groups

<14 or >20 are uncommon

Table ©-1 The Common Biological Fatty Acids

Symbol® Common Name Systematic Name Structure mp (°C)
Saturated fatty acids

12:0 Lauric acid Dodecanoic acid CH;(CH,),,COOH 44.2
14:0 Myristic acid Tetradecanoic acid CH;(CH,),,COOH 59,
16:0 Palmitic acid Hexadecanoic acid CH;(CH,),,COOH 63.1
18:0 Stearic acid Octadecanoic acid CH;(CH,),,COOH 69.1
20:0 Arachidic acid Eicosanoic acid CH;(CH,),sCOOH 75.4
22:0 Behenic acid Docosanoic acid CH;(CH,),,COOH 81
24:0 Lignoceric acid Tetracosanoic acid CH;(CH,),,COOH 84.2
Unsaturated fatty acids (all double bonds are cis)

16:1n-7 Palmitoleic acid 9-Hexadecenoic acid CH;(CH,)sCH=CH(CH,);COOH —-0.5
18:1n-9 Oleic acid 9-Octadecenoic acid CH;(CH,),CH=CH(CH,);COOH 13.2
18:2n—6 Linoleic acid 9,12-Octadecadienoic acid CH3(CH;)4(CH=CHCH,),(CH,)sCOOH -9
18:3n-3 a-Linolenic acid 9.12,15-Octadecatrienoic acid CH;CH,(CH=CHCH,)3(CH,)sCOOH =1
18:3n—6 v-Linolenic acid 6.,9,12-Octadecatrienoic acid CH;(CH,)4(CH=CHCH,)s(CH,);COOH

20:4n—6 Arachidonic acid 5.8,11.14-Eicosatetraenoic acid CH;(CH,)4(CH=CHCH,),(CH,),COOH —49.5
20:5n—-3 EPA 5.8,11,14,17-Eicosapentaenoic acid CH;CH,(CH=CHCH,)s(CH,),COOH —54
22:6n—3 DHA 4,7,10,13,16,19-Docosohexenoic acid CH;CH,(CH=CHCH,),CH,COOH

24:1n—9 Nervonic acid 15-Tetracosenoic acid CH;(CH,),CH=CH(CH,),;COOH 39

“Number of carbon atoms: Number of double bonds. For unsaturated fatty acids, the quantity “n—x" indicates the position of the last double bond in
the fatty acid, where #n is its number of C atoms, and x is the position of the last double-bonded C atom counting from the methyl terminal (w) end.
Source: Dawson, RM.C., Elliott, D.C., Elliott, W.H., and Jones, K.M., Data for Biochemical Research (3rd ed.), Chapter 8, Clarendon Press (1986).
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Digestion & absorption in small intestine

Bile acids (syn by liver, stored in gall bladder, secreted into small intestine)
Increase lipid-water interface

R, =OH Cholic¢ acid Chenodeoxycholic acid
Ry = NH—CH,—COOH Glycocholic acid  Glycochenodeoxycholic acid

Ry =NH—CH,—CH>,—SO03H Taurocholic acid Taurochenodeoxycholic acid

Figure 19-1 Fund Is of Biochemistry, 2/e
© 2006 John Wiley & Sons




Lipid transport

In complex with proteins: lipoproteins

nonpolar core of triacylglycerols and cholesteryl esters
surrounded by an amphiphilic coating of protein, phospholipid, and cholesterol

Table 19-1 Characteristics of the Major Classes of Lipoproteins in Human Plasma.

Chylomicrons VLDL IDL LDL HDL
Density (g-cm™7) <0.95 <1.006 1.006-1.019 1.019-1.063 1.063-1.210
Particle diameter (A) 750-12,000 300-800 250-350 180-250 50-120
Particle mass (kD) 400,000 10,000-80,000 5000-10,000 2300 175-360
% Protein” 1.5-2.5 5-10 15-20 20-25 40-55
% Phospholipids® 7-9 15-20 22 15-20 20-35
% Free cholesterol” 1-3 5-10 8 7-10 3-4
% Triacylglycerols® 84-89 50-65 22 7-10 3-5
% Cholesteryl esters” 3-5 10-15 30 35-40 12
Major apolipoproteins A-1, A-1I, B-48, C-1, B-100, C-1, C-11, B-100, C-1, C-11, B-100 A-L A-IIL C-1, C-I1,
C-1I, C-IIL E C-1IL E C-ILL E C-III, D, E

“Surface components.
bCore lipids.
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Apolipoproteins: at least nine are known



Cholesteryl ester

Phospholipid

Unesterified cholesterol
Apolipoprotein B-1

LDL

Figure 19-5 Fundi Is of Biochemistry, 2/e
©2006 John Wiley & Sons

Human apoA-1

Non-
polar

B 68 vttt i tetramer
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Receptor-mediated endocytosis of LDL
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HDL transports cholesterol from the tissue to the liver
The liver is the only organ capable of disposing of
significant quantities of cholesterol (by its conversion to bile acids)

LDL.: receptor-mediated endocytosis
HDL: SR-BI (cell-surface receptor)-mediated



Fatty acid oxidation
occur in mitochondria

Fatty acid fed Breakdown product Excretion product
)
©>—(1IH (CH LH )n—CH c// ©— 4 @— i —NH—CHy—COOH
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Fatty acid activation
long chain fatty acid
by Acyl-CoA synthetases (thiokinases)
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Transport across mito membrane

Medium chain: direct transfer & activation to acyl-CoA

Long chain: carnitine mediated

Cytosol
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Ketone bodies

Ketogenesis: acetyl-CoA to acetoacetate or D-B-hydroxybutyrate

Important metabolic fuels for heart & skeletal muscle 0 P g
During starvation the brain depends on ketone bodies i T T e B
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OH 0
o o | Vi
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Figure 19-21 Fund tals of Biochemistry, 2/e
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Acetoacetate formation



Ketone bodies to acetyl-CoA

ketosis
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Fatty acid biosynthesis

Reverse of 3-oxidation process

B Oxidation

Occurs in mitochondrion

. CoAis acyl
~—Fatty acyl-CoA (Cp +2) group carrier

FADD FAD is electron
FADH> acceptor
Enoyl-CoA
H20 —
3-.-Hydroxyacyl-CoA LR Hydroxyaeyl
group
+
NAD+ NAD? is electron
NADH +H acceptor

3

B-Ketoacyl-CoA

COAD C5 unit product
Acetyl-CoA is acetyl-CoA

\—— Fatty acyl-CoA (Cp)

Figure 19-23 Fundamentals of Biochemistry, 2/e
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Biosynthesis

Occurs in cytoplasm
ACPis acyl Fatty acyl-ACP (Cj, 42) ——,
group carrier "
NADPH is — NADP*
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Enoyl-ACP
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Acetyl group transfer from mito to cytosol

tricarboxylate transport system
ATP-citrate lyase

Mitochondrion Inner Cytosol COy~
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CH3 CH3
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Figure 19-24 Fundamentals of Biochemistry, 2/e
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Acetyl-CoA carboxylase (ACC)

The first committed step of fatty acid synthesis & r.d.s.
Allosteric and covalent regulation

CO, activation and carboxylation

1
CH3—C—SCoA

HCO3™ + ATP ADP +P;j A‘etvl_con o
E —biotin L—L E —biotin—CO5~ +h _OQC—CHZ—E—SCOA + E— biotin
Biotinyl- Carboxyhiotinyl-enzyme Malonyl-CoA
enzyme

Unnumbered figure pg 652 Fundamentals of Biochemistry, 2/e
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Mammalian ACC: two iIsoforms

adipose tissue, a-ACC; heart muscle, B-ACC; liver, both
Heart muscle does not synthesize fatty acids
What is the function of B-ACC?
Malonyl-CoA strongly inhibits the mito import of fatty acyl-CoA

E. coli ACC
regulated by guanine nucleotides
why? Fatty acid synthesis is coordinated with cell growth



Fatty acid synthase

E. coli by individual enzymes

Plant: in chloroplast by individual enzymes

Yeast: cytosolic 2500-kD multifunctional enzyme a.636
Animal: 534-kD consisting of two identical polypeptide chains

Acyl-carrier protein (ACP)
in E. coli 10-kD polypeptide
in animal a part of the multifunctional complex

H H OH CH3 0
I - Il
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¢ v a | I
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I | - Il Il
HS —CH;—CH;—N—C—CH;—CH;—N—C—C—C—CH—0—P—0—P—0—CH; O__ Adenine
y J

— I T | 1 I/H N
Cysteamine o O H CH3 0 o H\ /H
Phosphopantetheine group of CoA “20;p0 OH

Figure 19-25 Fund. Is of Biochemistry, 2/e
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Figure 19-26 Fundamentals of Biochemistry, 2/e
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transacylase (MAT)

| I
CHy—C—SACP

MAT: acetyl or malonyl group transfer to ACP

KS (condensing enzyme)

Two reductions & a dehydration

require two NADPH
Further elongation
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8 acetyl-CoA + 14 NADPH + 7 ATP —

palmitate + 14 NADP* + 8 CoA + 6 H,O + 7 ADP + 7 Pi




Animal fatty acid synthase

Dimers operate in concert: head to tail

7 reactions by 6 discrete active sites (two by MAT)

SH
clys - SH Pantetheine
N+ Ks MAT | DH |Dimerization | ER | KR [t TE |C
[N o I\ v AN - I\ J
Domain | Interdomain Domainll Domainlil
region

Figure 19-27 Fundamentals of Biochemistry, 2/e
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Malignant tissues: high levels of fatty acid synthase
An inhibitor of fatty acid synthesis: possible anticancer agent

Cl OH

Triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol) o
antibacterial agent
inhibits enoyl-ACP reductase al €

emergence of resistant strains Triclosan

o 19-figure 1 Fundammentals ofBnchemisiy, e




Synthesis of triacylglycerols

in ER or peroxisome

dihydroxyacetone ﬁ
CH,—OH phosphate CH,—0—C—R
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| |
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glycerol-3-phosphate acyl-dihydroxyacetone
dehydrogenase phosphate reductase
R . . NADP*
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1]
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acyltransferase '
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tHy—0—pos2- O N CHy—0—PO32-
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Glycerogenesis
important for triacylglycerol biosynthesis

dihydroxyacetone phosphate and glycerol-3-phosphate

from glycolysis or gluconeogenesis

A summary of lipid metabolism

Triacylglycerols

L

Membrane lipids <::I Fatty acids

fatty acid synthesis I

ATP —/

/N

‘N

B oxidation

. [FADHS
V

Cholesterol <:l Acetyl-CoA ! Ketone bodies

Figure 19-31 Fund tals of Bioch
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Regulation of
Fatty acid metabolism
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Lipase

Lipoprotein lipase (LPL)

Lipoprotein lipase is found in vascular endothelium. It is activated by insulin, ACTH,
TSH, glucagon and thyroid hormone. Its activity is enhanced by heparin. As discussed
above, lipoprotein lipase hydrolyzes CM and VLDL to free fatty acids and glycerol
and VLDL-remnants, respectively. Apolipoprotein C is essential for activation of
LPL.

Hepatic lipase
This enzyme hydrolyzes surface phospholipids on lipoproteins and is responsible for
converting VLDL to LDL.

Hormone sensitive lipase

This enzyme is responsible for lipolysis (mobilization of triglycerides from adipose
tissue to yield free fatty acids and glycerol). The enzyme is stimulated by
catecholamines, growth hormone, thyroxine, corticosteroids and prostaglandins. It is
inhibited by insulin. Fatty acids are transported to the liver (free or aloumin-bound),
where they are taken up and used for energy (beta oxidation), combined with
triglycerides to form VLDL or incorporated into ketones. Therefore, lipolysis will
increase VLDL production.



Synthesis of other lipids

Membrane lipids and signal molecules

Synthesis in membranes of the cytosolic side of ER & then transport to their destinations
Gylcerolipids & sphingolipids

Glycerolipid Sphingolipid (phospholipid or glycolipid)
glyc ero;hospho lipid triacyolycerol
phospholipid
i ™
ﬁ (IZHz—O—C—R1 ﬁ (IZH—C=$—(CH2)12—CH3
Rz—c—o—?—H RZ—C—NH—f—H H
CHy—O0—X CHy;—O0—X
Glycerolipid Sphingolipid
X=H 1,2-Diacylglycerol N -Acylsphingosine (ceramide)
X = Carbohydrate Glyceroglycolipid Sphingoglycolipid (glycosphingolipid)
X =Phosphate ester Glycerophospholipid Sphingophospholipid
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COA—S—C—CHZ—CHZ—[CH2)12—CH3 + H;N—C—H

Biosynthesis of sphingolipids Palmitoyl-Con -

Most are glycolipids: carbohydrate units to the C1-OH
Biosynthetic precursors: palmitoyl-CoA & serine
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I 3-ketosphinganine synthase
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P |
R—C—NH—C—H O phosphocholine 0 CH—C=C—(CHah—CHs
o < —C—NH—C—
CHy;—O0—P—0—CHy;—CH>— N(CH3)3 R—C—NH C[ H H
| P CH;0H

(o]
Sphingomyelin

Ceramide (N-acylsphingosine)
Figure 19-36 Fundamentals of Biochemistry, 2/e

3000 aha ey 8 s © 2006 John Wiley & Sons



NANA
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Eicosanoids from arachidonic acid (p 247, Fig. 9-12)

Act at very low conc and locally

C2 ester of phosphatidylinositol in membrane

Tissue dependent products
Varity of function

pain and fever = COOH
blood pressure m

blood coagulation Arachidonic acid

reproduction

Opposite actions inhibits)
thromboxane & prostacyclin COOH
O~ .. d
J,O\/\/\/\/
COOH aH

PGH2
Ho ©

HO OH (o} ]f\/\/

6-0Oxo-PGF, ,
(a prostacyclin) N NN N
endothelial cells "9 OH
PGFy,

(a prostaglandin)

Figure 9-12 Fundamentals of Biochemistry, 2/e
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Prostaglandins
Prostaglandin H2 synthase (COX)
Cyclooxygenase & peroxidase
Two isoforms: COX-1 & COX-2
COX-1: constitutive expression in most tissue
COX-2: certain tissue in response to inflammatory stimuli

Acetylation of a Ser residue

o)
@[2 —OH
H3C CH3
o_ﬁ_CH3 \CH—CHZOéH—COOH
o Hac”/
Aspirin Ibuprofen
(acetylsalicylic acid) CHs
c=0

|
= Blocking active site

OH
Acetaminophen (tyrenol)

Finding of COX-3: a target of acetaminophen?
Poor binding of acetaminophen to COX-1 & -2

Arachidonate
205 \i cyclooxygenase
0 — coo-
I\
OOH
l peroxidase
o — coo-
SO
OH
PGH,
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Cholesterol metabolism

Biosynthesis

HMG-CoA synthesis in cytosol: thiolase & HMG-CoA synthase
(in mitochondria for ketone bodies)

Mevalonate (C6): by HMG-CoA reductase
the rate limiting step

Isopentenyl pyrophosphate (C5)

?H3 C
CH,=C—CH=CH,» C—C—C—C
Isoprene An isoprene unit

(2-methyl-1,3-butadiene)

©2006 John Wiley & 5
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E 0
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Regulation of cholesterol synthesis

The main regulation: HMG-CoA reductase

Short-term reqgulation
Competitive inhibition
Allosteric effects

Covalent modification: phosphorylation by AMPK

AMPK
http://www.indstate.edu/thcme/mwking/ampk.html

Reductase
TP kinase
Reductase kinase Phosphoprotein
kinase phosphatase “( :)_
ADP 1—/ \p _/ k HO
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HMG-CoA
reductase
ChOIEStmI \ /
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Pi CSR H,0
[
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ADP
P

cAMP —@—- Phosphoprotein
. m‘/\_' Pi
aH

phosphatase
copyright 1993 S . Marchesini
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HMG-CoA
reductase

http://www.med.unibs.it/~marchesi/cholest.html
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Long-term control: gene expression
the primary regulation

Increased as much as 200-fold along with >20 other genes for synthesis and uptake

Sterol regulatory element (SRE)
SREBP: regulatory & bHLH domains

SCAP: SREBP cleavage-activating protein
sterol-sensing domain & WD repeat

Activation procedure
Low cholesterol in ER
SCAP conformation change

Transport to golgi apparatus via membranous vesicles

Site-1 protease
Site-2 protease
bHLH binding to SRE

SCAP
ER WD Reg. bHLH
o @

Cholestero|_| Y
D 0.0.0.0.0.0.9.4

bHLH

Golgi . WD Reg. bHLH —— bHLH
GEEEESD 6 o

Serine protease Metalloprotease
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HMG-CoA reductase inhibitors: statins

Hypercholesterolemia WS 0
Competitive inhibitor of HMG-CoA reductase N

X=H R=CH; Lovastatin (Mevacor) Atorvastatin
X=H R=0H Pravastatin (Pravachol) (Lipitor)
X=CH3 R=CH; Simvastatin (Zocor)

HO
b €00~
H3C” HO
0 N"coo"
HsC*
OH

S—CoA

Endothelial Function

Plaque stabili
{ Inflammatory cell infiltrate
| Macrophage MMP synthesis
T Collagen synthesis
T Increased VSMC content
T Plaque stability in vivo

1F eNOS expression

U Endothelin 1 expression
Preserved coronary EC function
Preserved myocardial perfusion
Preserved coronary vasa vasorum

Angiogenesis
1 PI-3 kinase/Akt activity
T Circulating EPC
1 Angiogenesis in vitro & in vivo
Biphasic actions on angiogenesis
Inhibition with high dose statin

Vascular cytoprotection

T eNOS expression

1 PI-3 kinase/Akt activity

L crp

T Increased DAF expression on EC
| Complement-mediated injury

Anti-thrombotic

T EC fibrinolytic activity

Ul Tissue factor expression

T Ecto-5'-Nucleotidase

Ul Platelet activation

U Cerebral ischaemia and stroke

Anti-inflammatory
1 NO and ! NF-xB activation
I} EC activation
| Leukocyte-EC adhesion
U Pro-inflammatory cytokines
L crp

Anti-oxidant
Inhibition of NAD(P)H oxidase
| Superoxide formation
J LDL oxidation
T Oxygen free radical scavenging
U Cardiac hypertrophy

Immunomodulatory
U IFNy-induced MHC Class IT
1 Inhibition of LFA-1
U T cell activation
{§ Monocyte activation
1 Transplant survival
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HMG-CoA
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Cholesterol transport and atherosclerosis

Cellular cholesterol concentration depends on
the rate of cholesterol synthesis
the ability of cell to absorb cholesterol from circulating lipoproteins

High LDL is a strong risk factor for cardiovascular disease
Accumulation of lipid in vessel walls: Atherosclerosis
Myocardial infarction (heart attack)
Stroke (brain)

2 0

AR T R S
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Role of the LDL receptors
familial hypercholesterolemia (FH)
Long-term ingestion of a high-fat/high-cholesterol diet

Cholesterol efflux from cells
LDL receptor: FH
ABCAL (ATP-cassette binding protein Al): Tangier disease
no HDL synthesis
accumulation of cholesteryl ester in macrophages
develop atherosclerosis

Cholesterol

Cell

Normal Familial hypercholesterolemia
(a) (b)
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