
# Introduction to Metabolism



Chapter 13 Opener Fundamentals of Biochemistry, 2/e

Trophic strategies: nutritional requirements

Autotrophs chemolithotrophs photoautotrophs

Energy

Heterotrophs

Obligate aerobes Anaerobes facultative anaerobic obligate anaerobic

Electron acceptor (oxidizing agent)

#### Metabolic pathway Catabolic & anabolic Enzymes & metabolites

Roles of ATP and NADP+ in metabolism

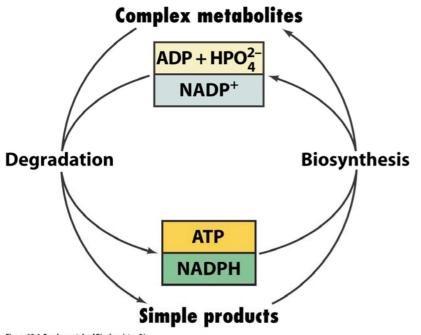



Figure 13-1 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

#### Overview of catabolism

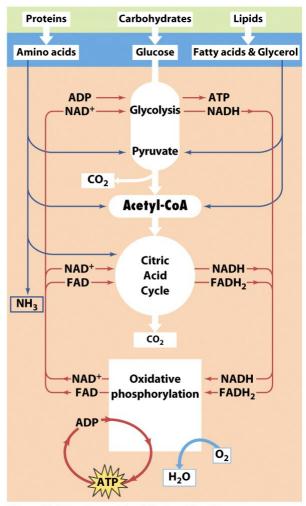
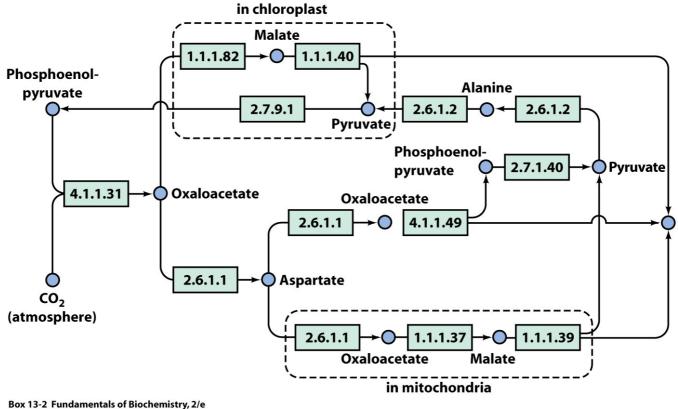




Figure 13-2 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Converge to common intermediates

#### Mapping metabolic pathways catalyzed by enzymes



© 2006 John Wiley & Sons

## Enzyme reactions fall into 4 major types

Oxidations and reductions (oxidoreductases) Group-transfer reactions (transferases and hydrolases) Eliminations, isomerizations, and rearrangements (isomerases and mutases) Reactions that make or break C-C bonds (hydrolases, lyases, and ligases)

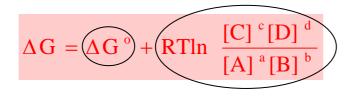
#### Compartmentation Metabolic pathways occur in specific cellular locations

| Organelle                    | Major functions                                                                                                            |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Mitochondrion                | Citric acid cycle, oxidative phosphorylation, fatty acid oxidation, amino acid breakdown                                   |
| Cytosol                      | Glycolysis, pentose phosphate pathway, fatty acid<br>biosynthesis, many reactions of gluconeogenesis                       |
| Lysosomes                    | Enzymatic digestion of cell components and ingested matter                                                                 |
| Nucleus                      | DNA replication and transcription, RNA processing                                                                          |
| Golgi apparatus              | Posttranslational processing of membrane and<br>secretory proteins; formation of plasma<br>membrane and secretory vesicles |
| Rough endoplasmic reticulum  | Synthesis of membrane-bound and secretory proteins                                                                         |
| Smooth endoplasmic reticulum | Lipid and steroid biosynthesis                                                                                             |
| Peroxisomes                  | Oxidative reactions catalyzed by amino acid                                                                                |
| (glyoxysomes in              | oxidases and catalase; glyoxylate cycle                                                                                    |
| plants)                      | reactions in plants                                                                                                        |

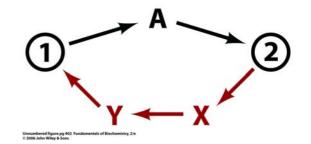
#### Table 13-1 Metabolic Functions of Eukaryotic Organelles

Table 13-1 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Metabolic pathways depends on tissues and organs liver, muscle, adipocyte isozymes: LDH (take-home work)


## Thermodynamic considerations

metabolic flux (rate of flow): analogous to dam

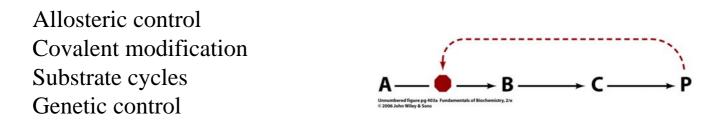

near-equilibrium reaction (reversible):

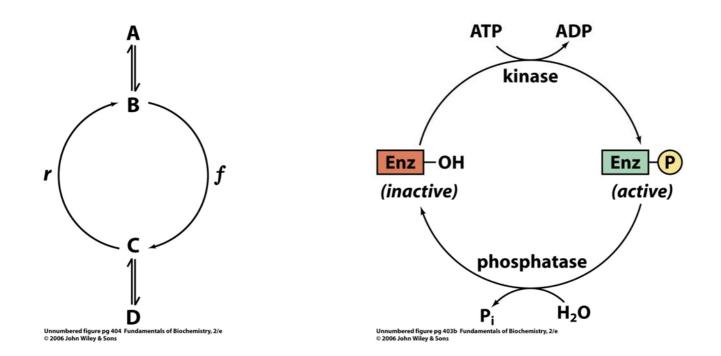
depends on the relative concentrations of substrates and products <u>far-equilibrium reaction (irreversible)</u>:

accumulation of substrate (insufficient catalytic efficiency) controlled by allosteric effector



- 1. Metabolic pathways are irreversible: confers directionality
- 2. Every metabolic pathway has a first committed step
- 3. Catabolic and anabolic pathways differ





### Control of metabolic flux

 $\mathbf{J} = \mathbf{v}(\mathbf{f}) - \mathbf{v}(\mathbf{r})$ 

At equilibrium J=0, although v(f) and v(r) may be quite large

Flux is determined by the slowest step (rate-determining step) \*\*\* committed step





### High-energy compounds

High-energy intermediates: phosphorylated compounds, NADH A sort of free energy currency

ATP and phosphoryl group transfer: thermodynamically favored but kinetically disfavored

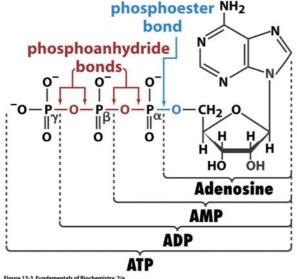



Figure 13-3 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

| Table 13-2 Standard Free Energies of      |
|-------------------------------------------|
| Phosphate Hydrolysis of Some Compounds of |
| Biological Interest                       |

| Compound                                                               | $\Delta G^{\circ \prime} \; (\mathrm{kJ} \cdot \mathrm{mol}^{-1})$ |  |  |
|------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|
| Phosphoenolpyruvate                                                    | -61.9                                                              |  |  |
| 1,3-Bisphosphoglycerate                                                | -49.4                                                              |  |  |
| ATP ( $\rightarrow$ AMP + PP <sub>i</sub> )                            | -45.6                                                              |  |  |
| Acetyl phosphate                                                       | -43.1                                                              |  |  |
| Phosphocreatine                                                        | -43.1                                                              |  |  |
| <b>ATP</b> ( $\rightarrow$ <b>ADP</b> + <b>P</b> <sub><i>i</i></sub> ) | -30.5                                                              |  |  |
| Glucose-1-phosphate                                                    | -20.9                                                              |  |  |
| PP <sub>i</sub>                                                        | -19.2                                                              |  |  |
| Fructose-6-phosphate                                                   | -13.8                                                              |  |  |
| Glucose-6-phosphate                                                    | -13.8                                                              |  |  |
| Glycerol-3-phosphate                                                   | -9.2                                                               |  |  |

*Source:* Mostly from Jencks, W.P., *in* Fasman, G.D. (Ed.), *Handbook of Biochemistry and Molecular Biology* (3rd ed.), Physical and Chemical Data, Vol. I, pp. 296–304, CRC Press (1976).

Table 13-2 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

#### Coupled reactions

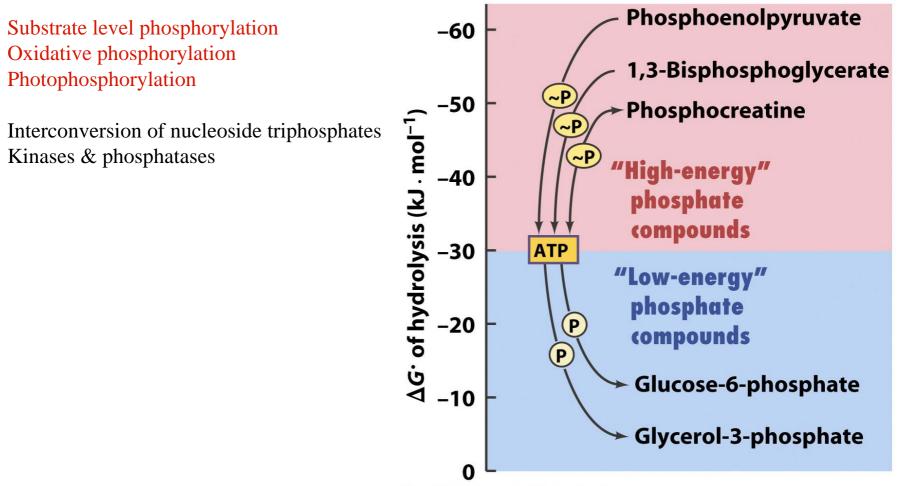
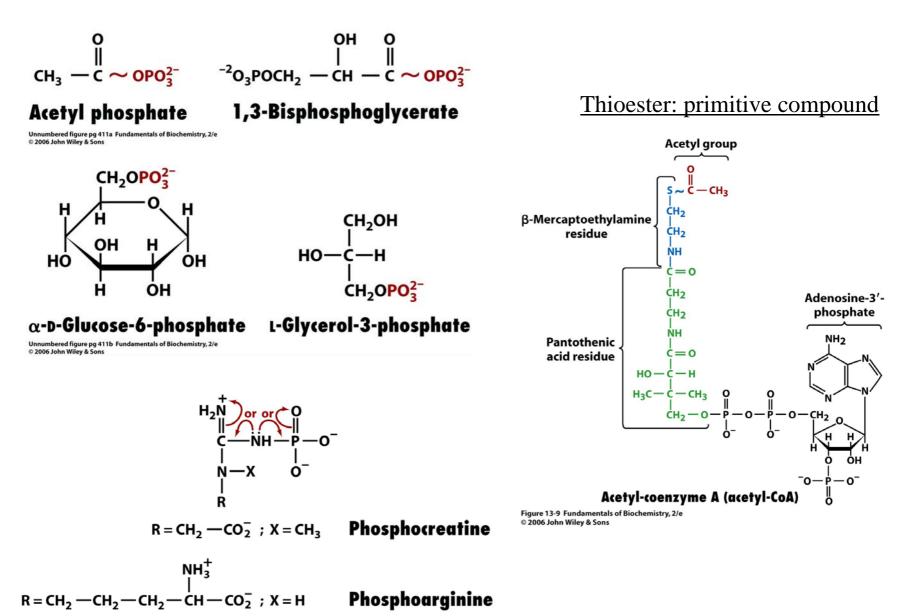
coupling of exergonic and endergonic process Not actual process in the catalyzing enzyme ATP coupling to conformational changes

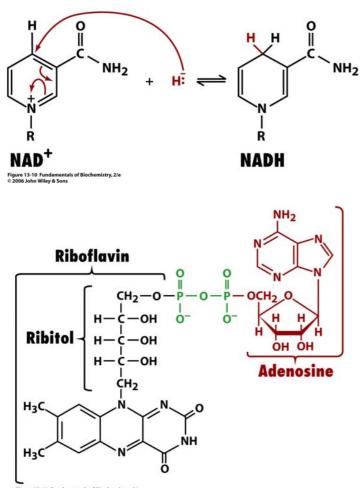
| (a)                                           |                                                    |                 |                                          | G′ (kJ∙mol <sup>−1</sup> )                   |
|-----------------------------------------------|----------------------------------------------------|-----------------|------------------------------------------|----------------------------------------------|
| Endergonic<br>half-reaction 1                 | P <sub>i</sub> + glucose                           | $\rightarrow$   | glucose-6-P + H <sub>2</sub> O           | +13.8                                        |
| Exergonic<br>half-reaction 2                  | ATP + H <sub>2</sub> O                             | <del>~`</del>   | $ADP + P_i$                              | -30.5                                        |
| Overall<br>coupled reaction                   | ATP + glucose                                      | <del>()</del>   | ADP + glucose-6-P                        | -16.7                                        |
| <i>(b)</i><br>Exergonic<br>half-reaction 1 Cl | $H_2 = C + H_2O$<br>OPO <sub>3</sub> <sup>2-</sup> | <del>, (</del>  | о<br>∥<br>сн₃—с—соо <sup>-</sup> + р,    | <i>G'</i> (kJ∙mol <sup>−1</sup> )<br>, –61.9 |
| Pho                                           | sphoenolpyruvate                                   |                 | Pyruvate                                 |                                              |
| Endergonic<br>half-reaction 2                 | $ADP + P_i$                                        | <del>, ``</del> | ATP + H <sub>2</sub> O                   | +30.5                                        |
| Overall<br>coupled reaction                   | $CH_2 = C + ADP$                                   | <del>``</del>   | о<br>  <br>сн <sub>3</sub> —с—соо- + атр | -31.4                                        |

Figure 13-5 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

## Other phosphorylated compounds

ATP is continually being hydrolyzed and regenerated metabolic half-life: from seconds to minutes



Figure 13-7 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

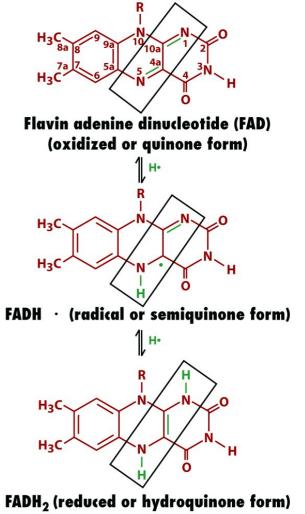


Unnumbered figure pg 411c Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

#### Oxidation-reduction reactions

One electron transfer Two electron transfer Reversible reaction





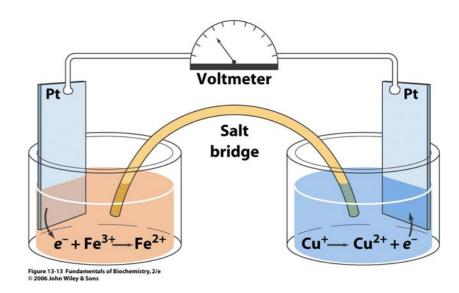


Figure 13-12 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Figure 13-11 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

#### The Nernst equation

Oxidation-reduction reactions: electron transfer reaction Electron donor & acceptor Electrochemical cells:

redox pair (analogous to acid-base pair) a half-reactions: electron donor and its conjugate electron acceptor



| Half-Reaction                                                                                                          |           |  |
|------------------------------------------------------------------------------------------------------------------------|-----------|--|
| $\frac{1}{2}$ O <sub>2</sub> + 2 H <sup>+</sup> + 2 $e^- \Longrightarrow$ H <sub>2</sub> O                             | 0.815     |  |
| $SO_4^{2-} + 2 H^+ + 2 e^- \Longrightarrow SO_3^{2-} + H_2O$                                                           | 0.48      |  |
| $NO_3^- + 2 H^+ + 2 e^- \Longrightarrow NO_2^- + H_2O$                                                                 |           |  |
| Cytochrome $a_3$ (Fe <sup>3+</sup> ) + $e^- \Longrightarrow$ cytochrome $a_3$ (Fe <sup>2+</sup> )                      |           |  |
| $O_2(g) + 2 H^+ + 2 e^- \Longrightarrow H_2O_2$                                                                        | 0.295     |  |
| Cytochrome $a$ (Fe <sup>3+</sup> ) + $e^- \Longrightarrow$ cytochrome $a$ (Fe <sup>2+</sup> )                          | 0.29      |  |
| Cytochrome $c$ (Fe <sup>3+</sup> ) + $e^- \Longrightarrow$ cytochrome $c$ (Fe <sup>2+</sup> )                          | 0.235     |  |
| Cytochrome $c_1$ (Fe <sup>3+</sup> ) + $e^- \Longrightarrow$ cytochrome $c_1$ (Fe <sup>2+</sup> )                      | 0.22      |  |
| Cytochrome $b$ (Fe <sup>3+</sup> ) + $e^- \Longrightarrow$ cytochrome $b$ (Fe <sup>2+</sup> ) ( <i>mitochondrial</i> ) | 0.077     |  |
| Ubiquinone + 2 H <sup>+</sup> + 2 $e^- \Longrightarrow$ ubiquinol                                                      | 0.045     |  |
| Fumarate <sup>-</sup> + 2 H <sup>+</sup> + 2 $e^- \Longrightarrow$ succinate <sup>-</sup>                              | 0.031     |  |
| $FAD + 2 H^+ + 2 e^- \Longrightarrow FADH_2$ (in flavoproteins)                                                        | $\sim 0.$ |  |
| $Oxaloacetate^- + 2 H^+ + 2 e^- \Longrightarrow malate^-$                                                              | -0.166    |  |
| $Pyruvate^- + 2 H^+ + 2 e^- \Longrightarrow lactate^-$                                                                 |           |  |
| Acetaldehyde + 2 H <sup>+</sup> + 2 $e^- \Longrightarrow$ ethanol                                                      | -0.197    |  |
| $FAD + 2 H^+ + 2 e^- \Longrightarrow FADH_2$ (free coenzyme)                                                           | -0.219    |  |
| $S + 2 H^+ + 2 e^- \Longrightarrow H_2S$                                                                               | -0.23     |  |
| Lipoic acid + 2 H <sup>+</sup> + 2 $e^- \Longrightarrow$ dihydrolipoic acid                                            | -0.29     |  |
| $NAD^+ + H^+ + 2 e^- \Longrightarrow NADH$                                                                             | -0.315    |  |
| $NADP^+ + H^+ + 2 e^- \Longrightarrow NADPH$                                                                           | -0.320    |  |
| Cystine + 2 H <sup>+</sup> + 2 $e^- \Longrightarrow$ 2 cysteine                                                        |           |  |
| Acetoacetate <sup>-</sup> + 2 H <sup>+</sup> + 2 $e^- \Longrightarrow \beta$ -hydroxybutyrate <sup>-</sup>             |           |  |
| $\mathrm{H}^+ + e^- \rightleftharpoons \frac{1}{2} \mathrm{H}_2$                                                       | -0.421    |  |
| Acetate <sup>-</sup> + 3 H <sup>+</sup> + 2 $e^- \implies$ acetaldehyde + H <sub>2</sub> O                             | -0.581    |  |

 Table 13-3
 Standard Reduction Potentials of Some Biochemically Important

 Half-Reactions
 Figure 13-3

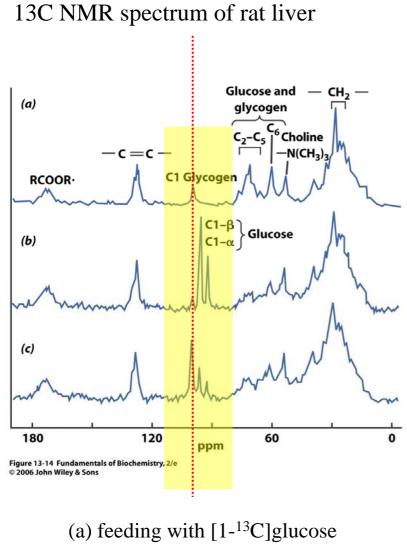
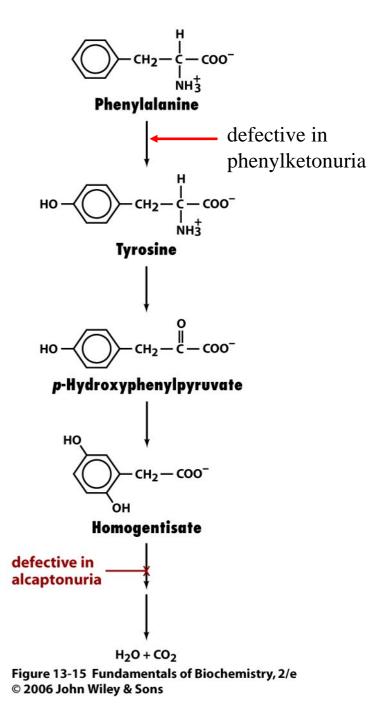

*Source:* Mostly from Loach, P.A., *In* Fasman, G.D. (Ed.), *Handbook of Biochemistry and Molecular Biology* (3rd ed.), Physical and Chemical Data, Vol. I, pp. 123–130, CRC Press (1976).

Table 13-3 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons


## Experimental approaches to the study of metabolism

Understanding the sequence, mechanism, and regulation

Approaches tracing metabolic fates perturbing the system metabolic inhibitors, genetic defects, genetic manipulation DNA microarrays (DNA chips): transcriptomics proteomics



- (b) after 5 min
- (c) after 30 min



#### PCR amplified yeast cDNAs

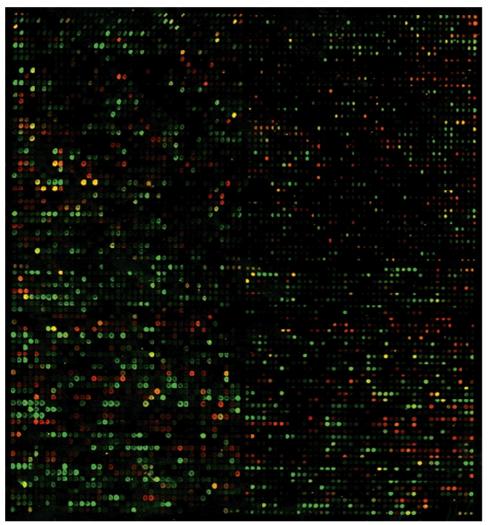
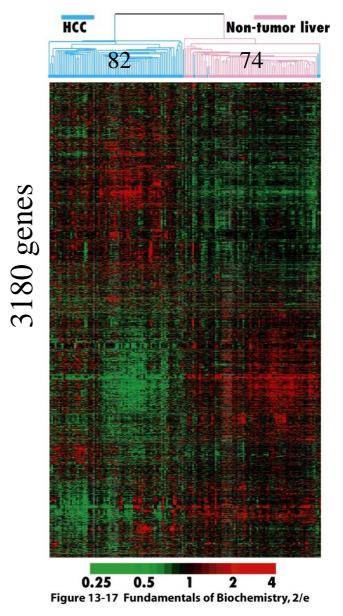




Figure 13-16 Fundamentals of Biochemistry, 2/e

Red spots: cDNAs from the cells with glucose Green spots: cDNAs from the cells without glucose

#### hepatocarcinoma

