Donald Voet • Judith G. Voet • Charlotte W. Pratt

Fundamentals of Biochemistry Second Edition

Chapter 12: Enzyme Kinetics, Inhibition, and Regulation

Copyright © 2006 by John Wiley & Sons, Inc.

Enzyme kinetics

The study of enzymatic reaction rates

Enzyme structure and catalytic mechanism

Chapter 12 Opener Fundamentals of Biochemistry, 2/e

Reaction kinetics A. Chemical kinetics

 $A \rightarrow P$: overall reaction process

 $A \rightarrow I_1 \rightarrow I_2 \rightarrow P$: elementary reactions

<u>Reaction order</u> v = d[P]/dt = -d[A]/dt = k[A]Reaction rate is proportional to the frequency with which the reacting molecules come together

Reaction rate is measured by the disappearance of reactant the appearance of product

k: rate constant *v*: reaction velocity First-order

Proportional to the conc. of the substance A: unimolecular reaction Velocity unit: Ms⁻¹ K: s⁻¹

Second-order

$$2A \rightarrow P$$

$$A + B \rightarrow P$$

$$v = -d[A]/dt = -d[B]/dt = k[A][B]$$

$$k \text{ unit} = M^{-1} \text{ s}^{-1}$$

Rate equations

the progress of a reaction as a function of time v = d[P]/dt = -d[A]/dt = k[A] $d[A]/[A] = d \ln [A] = -k dt$ Integration $\ln [A] = \ln [A]_o - kt$

 $t_{1/2}$ = Half-life (half-time)

$$\ln [A] = \ln [A]_{o} - kt$$

If [A] = [A]_{o} /2
ln ([A]_{o} /2 / [A]_{o}) = -k t_{1/2}
 $t_{1/2} = \ln 2/k = 0.693/k$

Radioactive decay

Radionuclide	Half-life	Type of Radiation ^a
^З Н	12 years	β
¹⁴ C	5715 years	β
²⁴ Na	15 hours	β
³² P	14 days	β
³⁵ S	87 days	β
⁴⁰ K	$1.25 imes10^9$ years	β
⁴⁵ Ca	163 days	β
125	59 days	γ
¹³¹	8 days	β, γ

 $^{a}\beta$ particles are emitted electrons, and γ rays are emitted photons.

B. Enzyme kinetics

Enzyme substrates: from a single to more

$$E + S \xrightarrow{k1} ES \xrightarrow{k2} P + E$$

ES: enzyme-substrate complex Second reaction is irreversible: no P is converted back to S

-Michaelis-Menten equation and

-the definitions of V_{max} and K_m for an enzyme-catalyzed reaction

Enzyme reaction: dependent on time, enzyme, substrate

Function of timeenzyme, substrate constant

Rates are estimated by V_0 at limiting substrate concentrations

Initial velocities increase *linearly* as a function of enzyme concentration.

Effect of substrate: rates over a range of substrate concentrations

At low concentrations, V_0 is a first-order function of [S], whereas at high concentrations V_0 is independent of [S]

Function of substrate concentration

At high concentrations, V_0 becomes independent of [S], reaching its maximal value, V_{max} Michaelis-Menten equation

$$E + S \xrightarrow{k1} ES \xrightarrow{k2} P + E$$

 V_{o} becomes independent of [S] at high concentrations because the enzyme active sites become saturated, limiting the reaction

to a steady-state concentration of enzyme-substrate complex, [ES].

The progress curves for a simple enzyme-catalyzed reaction

^{© 2006} John Wiley & Sons

Michaelis-Menten parametershyperbolic substrate saturation plot

 V_{o} approaches V_{max} asymptotically at saturating concentrations

$$V_{0} = \frac{V_{\max}[S]}{K_{M} + [S]}$$
1. [S] << K_{m} V_{0} = \frac{V_{\max}[S]}{K_{m}}
2. [S] >> K_{m} V_{0} = \frac{V_{\max}[S]}{[S]}
$$V_{\max} V_{0} = \frac{V_{\max}[S]}{[S]}$$
[S] = 1 K_{M} = 2 K_{M}
= 3 K_{M} V_{0} = ?
= 4 K_{M} = 5 K_{M}

Enzyme	Substrate	$K_M(\mathbf{M})$	$k_{\rm cat}~({ m s}^{-1})$	$k_{\rm cat}/K_M({\rm M}^{-1}\cdot{\rm s}^{-1})$
Acetylcholinesterase	Acetylcholine	9.5×10^{-5}	1.4×10^{4}	1.5×10^{8}
Carbonic anhydrase	CO ₂	1.2×10^{-2}	1.0×10^{6}	8.3×10^{7}
	HCO_3^-	2.6×10^{-2}	4.0×10^{5}	1.5×10^{7}
Catalase	H_2O_2	2.5×10^{-2}	1.0×10^{7}	4.0×10^{8}
Chymotrypsin	N-Accetylglycine ethyl ester	4.4×10^{-1}	5.1×10^{-2}	1.2×10^{-1}
	N-Acetylvaline ethyl ester	8.8×10^{-2}	1.7×10^{-1}	1.9
	N-Acetyltyrosine ethyl ester	6.6×10^{-4}	1.9×10^{2}	2.9×10^{5}
Fumarase	Fumarate	5.0×10^{-6}	8.0×10^{2}	1.6×10^{8}
	Malate	2.5×10^{-5}	9.0×10^{2}	3.6×10^{7}
Urease	Urea	2.5×10^{-2}	1.0×10^4	4.0×10^{5}

Table 12-1 The Values of K_{M} , k_{cat} , and k_{cat}/K_{M} for Some Enzymes and Substrates

Table 12-1 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Catalytic efficiency (k_{cat}/K_M)

The turnover number $k_{cat} = V_{max}/[E_T]$ ($k_{cat} = k_2$ in simple system). k_{cat} is the limiting rate at enzyme saturation How may substrate per enzyme (or active site) per second

When $[S] \ll K_M$ very little ES is formed and $[E] = [E]_T$

$$V_{o} = \frac{V_{max}[S]}{K_{M} + [S]} \longrightarrow V_{o} = \frac{k_{cat}[E_{T}][S]}{K_{M} + [S]} \longrightarrow V_{o} = \frac{k_{cat}}{K_{M}} [E_{T}][S]$$

 $k_{\text{cat}}/K_{\text{M}}$ is a second-order constant Indicating how often enzyme and substrate encounter one another in solution Therefore a measure of an enzyme's catalytic efficiency There is an upper limit: can't be greater than k_1 (what does it mean?) Catalytic perfection: $k_{\text{cat}}/K_{\text{M}} = 10^8 \sim 10^9 \text{ M}^{-1} \text{ s}^{-1}$

Rearranged Michaelis-Menten equationparameters from a straight line

Lineweaver-Burk equation

Unnumbered figure pg 367 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

A double-reciprocal (Lineweaver-Burk) plot

Values for $K_{\rm m}$ and $V_{\rm max}$ can be determined from a plot of $1/V_{\rm o}$ vs 1/[S]

Steady state kinetics cannot unambiguously establish a reaction mechanism

Unnumbered figure pg 368b Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Bisubstrate reactions

Unnumbered figure pg 369b Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Sequential reactions: single-displacement reactions

