Lysozyme Bacterial cell wall lysis Hydrolysis reaction β(1-4) glycosidic linkage of NAM-NAG and poly(NAG)

Figure 11-17a Fundamentals of Biochemistry, 2/e

Cleavage site: glycosidic bond between residue D and E Residue D: normal conformation is not allowed to bind distorted conformation

© 2006 John Wiley & Sons

The interactions of lysozyme with its substrate Through computer model building

Figure 11-19 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Which side is cleaved between NAM and NAG?

Using isotope labeled H_2O Cleave between C1 and the bridge oxygen O1 Producing β anomer

Unnumbered figure pg 335b Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

The mechanism of nonenzymatic acid-catalyzed hydrolysis of an acetal to a hemiacetal

Catalytic mechanism

Glu 35 and Asp 52

Asp 52 surrounded by polar residues: charged and stabilizing oxonium ion Glu 35 in nonpolar pocket: uncharged & acid catalyst

The lysozyme reaction mechanism: proceeds in 4 steps

© 2006 John Wiley & Sons

Experimental support for the lysozyme mechanism

Table 11-4Binding Free Energies of HEWLysozyme Subsites

Site	Bound Saccharide	Binding Free Energy $(kJ \cdot mol^{-1})$
А	NAG	-7.5
В	NAM	-12.3
С	NAG	-23.8
D	NAM	+12.1
E	NAG	-7.1
F	NAM	-7.1

Source: Chipman, D.M. and Sharon, N., *Science* **165**, 459 (1969).

Transition state analog inhibition coplanar structure: shaded

Figure 11-22 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Table 11-4 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

© 2006 John Wiley & Sons

Serine proteases serine residue at the active site chymotrypsin, trypsin, elastase

Cysteine proteases: papain, plant & viral proteases Asparatic proteases: pepsin Metalloproteases: carboxypeptidase Unknown mechanism

The active site Serine 195: DIPF (diisopropylphosphofluoridate) His 57: affinity labeling TPCK TLCK DIPF

Irreversible inactivator: potent nerve poison $CH(CH_3)_2$ Specific binding to Ser 195 (Active Ser) — CH_2OH + F - P = 0 $CH(CH_3)_2$ **Diisopropylphospho**fluoridate (DIPF) $CH(CH_3)_2$ $(Active Ser) - CH_2 - O - P = O$ HF **DIP–Enzyme** $CH(CH_3)_2$

> Unnumbered figure pg 341a Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Nerve poisons

Organophosphorous groups nerve gas: DIPF, sarin insecticide: parathion, malathion

Acetylcholine esterase inhibitor

Box 11-3 figure 1 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

 O_2N O_2N O_2N O_2N O_2N O_2N $O_2CH_2CH_3$ $O_2CH_2CH_3$

Parathion

Box 11-3 figure 2 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

stimulation of muscle contraction

Affinity labeling of His 57

substrate analogs covalent binding: useful for identification of the reactive group

tosyl-L-phenylalanine chloromethyl ketone

tosyl-L-lysine chloromethyl ketone

CH₃-CH₂O CH₃-CH₃-CH₂CI O Tosyl-L-phenylalanine chloromethylketone

Unnumbered figure pg 341b Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Figure 11-24 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

X-ray structure of bovine trypsin

trypsin, chymotrypsin. Elastase Similar structures ~40% sequence identities

Figure 11-25 Fundamentals of Biochemistry, 2/e

The active site residues of chymotrypsin Three invariant residues: catalytic triad

Figure 11-26 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Specificity pockets

Substrate specificities Aromatic side chains Cationic side chains Nonpolar Small side chains

Site-directed mutagenesis Trypsin Asp 189 to Ser Unexpected results: poor nonspecific activity

Evolutionary relationships among serine proteases

Divergent evolution: trypsin, chymotrypsin Convergent evolution: subtilisin

Conserved catalytic triad But low homology in primary structures

Figure 11-28 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Catalytic Mechanism

4 steps

Tetrahedral intermediate Acyl-enzyme intermediate Tetrahedral intermediate

© 2006 John Wiley & Sons

Enzyme-substrate complex

Figure 11-29 part 1 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Figure 11-29 part 3 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Figure 11-29 part 4 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Serine proteases preferentially bind the transition state

Oxyanion hole Tetrahedral distortion allows H-bond formation Hydrogen bonds: low-barrier hydrogen bonds (LBHBs)

Transition state stabilization in the serine proteases

His 57

Asp

102

The trypsin-BPTI complex

BPTI (bovine pancreatic trypsin inhibitor) prevent premature activation Association constant: 10¹³ M⁻¹ Resembles the tetrahedral intermediate Reaction can not proceed: rigidity & tight sealing

***α1-proteinase inhibitor: leukocyte elastase inhibitor (pulmonary emphysema)

Computer generated drawing

Trypsin Ser 195 & BPTI's scissile peptide

Figure 11-31a Fundamentals of Biochemistry, 2/e

Figure 11-32 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Zymogens

Larger inactive precursors Autocatalytic or catalyzed by other proteases Distorted active sites

Fibrin networks

Box 11-4 figure 1 Fundamentals of Biochemistry, 2/e

Figure 11-33 Fundamentals of Biochemistry, 2/4 © 2006 John Wiley & Sons Coagulation cascade

© 2006 John Wiley & Sons

Plasma Concentrations of Some Human Coagulation Factors

Factor	Concentration $(\mu M)^a$
XI	0.06
IX	0.09
VII	0.01
Х	0.18
Prothrombin	1.39
Fibrinogen	8.82

^aConcentrations calculated from data in High, K.A. and Roberts, H.R., (Eds.), *Molecular Basis of Thrombosis and Hemostasis,* Marcel Dekker (1995).

Box 11-4 Table 1 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons