Donald Voet • Judith G. Voet • Charlotte W. Pratt

Fundamentals of Biochemistry Second Edition

Chapter 6:

Proteins: Three-Dimensional Structure

Copyright © 2006 by John Wiley & Sons, Inc.

1958, John Kendrew

1 nm

Any regularity?

Chapter 6 Opener Fundamentals of Biochemistry, 2/e

The atomic structure of myoglobin as a stick model

A sequence of amino acids to a stable functional 3D form

Levels of protein structure

Figure 6-1 Fundamentals of Biochemistry, 2/e

Secondary structure

The peptide group: a rigid planar structure trans conformation

Unnumbered figure pg 131 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

~40% double bond character: due to resonance interactions: C-N bond is 0.13 Å shorter than its single bond C=O bond is 0.02 Å longer than that of aldehydes and ketones Trans conformation: more stable than cis conformation

Figure 6-2 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons Extended conformation of a polypeptide main chain: backbone

© 2006 John Wiley & Sons

The conformation of the backbone by rotation angles around the $C\alpha$ -N bond and the $C\alpha$ -C bond

Torsion angles of the polypeptide backbone

the Ca-N bond (Φ) 180°

the Ca-C bond (Ψ) 180°

The angles increase when rotated clockwise as viewed from $C\alpha$

Figure 6-4 Fundamentals of Biochemistry, 2/e

Steric interaction between adjacent peptide groups Conformational freedom is restricted

Figure 6-5 Fundamentals of Biochemistry © 2006 John Wiley & Sons

The Ramachandran diagram

Calculation of sterically allowed angles/observed angles in the proteins

Blue: sterically allowed angles for all residues except Gly and Pro Green: extreme limits for unfavorable atomic contacts Orange circles: conformational angles of secondary structures

Figure 6-6 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Gly

φ

Regular secondary structure α helix β sheet turns

The α helix

right handed helical 3.6 residues/turn 1.5 Å/residue 5.4 Å/turn (pitch) diameter: 12 Å

intra chain H bonds C=O of the nth residues N-H of the (n+4)th residue

side chains project outward

Figure 6-7 Fundamentals of Biochemistry, 2/e

Space-filling model of α helix

Figure 6-8 Fundamentals of Biochemistry, 2/e

β sheets

extended structure: pleated sheets inter chain H bonds

H-bond difference Antiparallel is more stable than parallel

Pleated appearance (not fully extended)

Figure 6-10 Fundamentals of Biochemistry, 2/e

Space filling model average of 6 strands

Figure 6-11 Fundamentals of Biochemistry, 2/e

Diagram of a β sheet in bovine carboxypeptidase A

Mixed: parallel and antiparallel Right-handed twist Complex topology (connectivity)

Figure 6-12 Fundamentals of Biochemistry, 2/e

Connections between adjacent strands in β sheets

Figure 6-13 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

C. Fibrous proteins

fibrous proteins: stiff, elongated, fibrous, insoluble globular proteins: compact, highly folded, globular, soluble some proteins have both regions

Fibrous proteins: keratin, collagen

keratin: structural proteins of hair, horn, nails, feathers

 α keratins in mammals (α -helical)

 β keratins in birds and reptiles (β -pleated)

 α keratins in mammals: over 30 variants

X-ray diffraction pattern resembles that of α helix 5.1 Å spacing coiled coil structure: left-handed

Coiled coil structure

7-residue pseudorepeat Nonpolar at a and d

3.5 residue repeat per turn Inclined $\sim 18^{\circ}$ relative to one another

Interdigitated side chains

Figure 6-14b Fundamentals of Biochemistry, 2/e

High order α keratin structure

Dimeric coiled coil Head to tail association: protofilament Dimerized protofilaments: microfibril

Rich in Cys disulfide bond depending on the content: hard and soft Permanent waves reduction & oxidation

HS IL - +NH4 HS, IL H NH3 Ammonium thioglycolate excess NH3 "perm satt" wrap hair SH HS straight + H202 curlu hair

The chemistry of perms. Reference: J. Soc. Cosmet. Chem. 1996, 47, 48-59.

Collagen: a triple helix

Left-handed polypeptides twisted into right-handed superhelical structure

Most abundant vertebrate protein Major connective tissue protein (muscle, tendons, ligaments, skin) >33 genetically distinct chains assembled into >20 collagen varieties in different tissues

Type I collagen two $\alpha 1(I)$ + one $\alpha 2(I)$ chains molecular mass ~285 kD a width of ~14 Å a length of ~3000 Å

epimysium, perimysium, endomysium: collagens muscle fiber: consists of myofibrils (actin, myosin) © The Benjamin/Cumming: Publishing Company, Inc.

Tendon and ligament

Natural ageing process

Proprietary and Confidential, all rights reserved, ©2014 MINERVA Research Labs Ltd.

Collagen polypeptide composition ~1/3: Gly

15-30%: Pro The others: 4-OH Pro, 3-OH Pro, 5-OH Lys Typical polypeptide: Gly - x - y (over ~1000 residues)

Unnumbered figure pg 140a Fundamentals of Biochemistry, 2/e \circledcirc 2006 John Wiley & Sons

Hydroxylation after protein synthesis prolyl hydroxylase ascorbic acid as a cofactor

Ascorbic acid (vitamin C)

Unnumbered figure pg 140b Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Typical polypeptide: Gly - x - y (x: Pro, y: Hyp)

Pro prevents forming α helix structure (lack of backbone N-H)

Why Gly is so frequent every 3rd residues in the crowded center N-H of each Gly generates H-bond with C-O of X (Pro)

The bulky and relatively inflexible Pro and Hyp confer rigidity on the entire assembly

> viewed from N-terminal H-bonds in white color (between Gly N & Pro O)

Figure 6-17b Fundamentals of Biochemistry, 2/e

Cross-linking side chains in collagen

Devoid of Cys Occur near the N- and C- termini (Lys & His) Lysyl oxidase Increased cross-linking with age

Collagen diseases Lathyrism Osteogenesis imperfecta Ehlers-Danlos syndrome

Figure 6-18 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Collagen fibril formation

Major Collagen Molecules				
Туре	Molecule composition	Structural features	Representative tissues	
Fibrillar collagens				
I	$[\alpha 1(I)]_2 [\alpha 2(I)]$	300-nm-long fibrils	Skin, tendon, bone, ligaments, dentin, interstitial tissues	
п	$[\alpha 1(II)]_3$	300-nm-long fibrils	Cartilage, vitreous humor	
ш	$[\alpha 1(III)]_3$	300-nm-long fibrils; often with type I	Skin, muscle, blood vessels	
v	[α 1(V)] ₃	390-nm-long fibrils with globular N-terminal domain; often with type I	Similar to type I; also cell cultures, fetal tissues	
Fibril-associated collagens				
VI	[α 1(VI)][α 2(VI)]	Lateral association with type I; periodic globular domains	Most interstitial tissues	
IX	[α 1(IX)][α 2(IX)][α 3(IX)]	Lateral association with type II; N-terminal globular domain; bound glycosami- noglycan	Cartilage, vitreous humor;	
Sheet-forming collagens				
IV	$\left[\alpha \ 1(\mathrm{IV})\right]_2 \left[\alpha \ 2(\mathrm{IV})\right]$	Two-dimensional network	All basal laminaes	

As of 2003, there were more than 28 different types of collagen identified

Nonrepetitive protein structure in globular proteins

Irregular structures: coil less ordered than α helix & β sheet different from random coil (disordered in denatured state)

Variations in standard secondary structure β bulge

<u>Turn and loops</u>

Propensity (P) of a residue to occur in regular secondary structure

Useful for predicting the secondary str of proteins with known a.a.

Table 6-1 Propensities of Amino Acid Residues for α Helical and β Sheet Conformations

Residue	Ρα	P _β
Ala	1.42	0.83
Arg	0.98	0.93
Asn	0.67	0.89
Asp	1.01	0.54
Cys	0.70	1.19
Gln	1.11	1.10
Glu	1.51	0.37
Gly	0.57	0.75
His	1.00	0.87
Ile	1.08	1.60
Leu	1.21	1.30
Lys	1.16	0.74
Met	1.45	1.05
Phe	1.13	1.38
Pro	0.57	0.55
Ser	0.77	0.75
Thr	0.83	1.19
Trp	1.08	1.37
Tyr	0.69	1.47
Val	1.06	1.70

Source: Chou, P.Y. and Fasman, G.D., *Annu. Rev. Biochem.* **47**, 258 (1978).

Table 6-1 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Reverse turns (β bends) in polypeptide chains

Occur at protein surfaces

Figure 6-19 Fundamentals of Biochemistry, 2/e

Ω loops: extended loops of 6-16 residues

Figure 6-20 Fundamentals of Biochemistry, 2/e