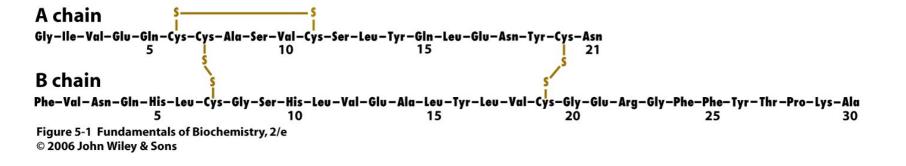
Donald Voet • Judith G. Voet • Charlotte W. Pratt

Fundamentals of Biochemistry Second Edition

Chapter 5: Proteins: Primary Structure

Copyright © 2006 by John Wiley & Sons, Inc.

Unlimited variation in protein structure and function $20x20x20... = 20^{100} = 1.27x10^{130}$



Protein	Amino Acid Residues	Subunits	Polypeptide Molecular Mass (D)
Proteinase inhibitor III (bitter gourd)	30	1	3,427
Cytochrome <i>c</i> (human)	104	1	11,617
Myoglobin (horse)	153	1	16,951
Interferon-γ (rabbit)	288	2	33,842
Chorismate mutase (Bacillus subtilis)	381	3	43,551
Triose phosphate isomerase (E. coli)	510	2	53,944
Hemoglobin (human)	574	4	61,986
RNA polymerase (bacteriophage T7)	883	1	98,885
Nucleoside diphosphate kinase	930	6	100,764
(Dictyostelium discoideum)			
Pyruvate decarboxylase (yeast)	2,252	4	245,456
Glutamine synthetase (E. coli)	5,616	12	621,264
Titin (human)	26,926	1	2,993,428

Table 5-1 Compositions of Some Proteins

Table 5-1 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

The primary structure of insulin: synthesized as a polypeptide chain and cleaved

Some restrictions in protein Size: lower limit, around 40 residues; upper limit, many hundreds Amino acid composition: most abundant (L, A, G, S, V, E) & least abundant (W, C, M, H) Nonpolypeptide components

Protein purification and analysis

Purification is mandatory for studying macromolecules The purification principle is universal to other molecules

<u>A. General approach</u> Native proteins & recombinant proteins Intracellular & extracellular Soluble protein & membrane protein

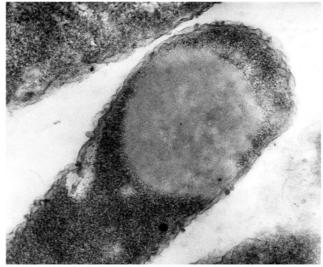
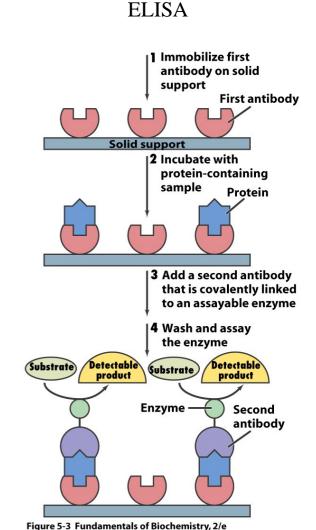


Figure 5-2 Fundamentals of Biochemistry, 2/e


Stabilizing protein

pH, temperature, degradative enzymes, adsorption to surface, storage

Assaying proteins

Assay: quantitative detection method catalysis reactions: measure substrate, product, cofactor colorimetric, coupled enzymatic reaction Immunoassays: using antibody RIA ELISA

Absorption spectroscopy Beer-Lambert law: $A = \log (I_0/I) = \varepsilon cl$

© 2006 John Wiley & Sons

Absorption spectrum Chromophore

Protein quantitation UV Bradford assay

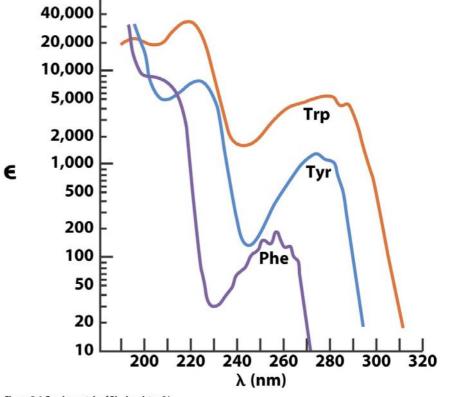
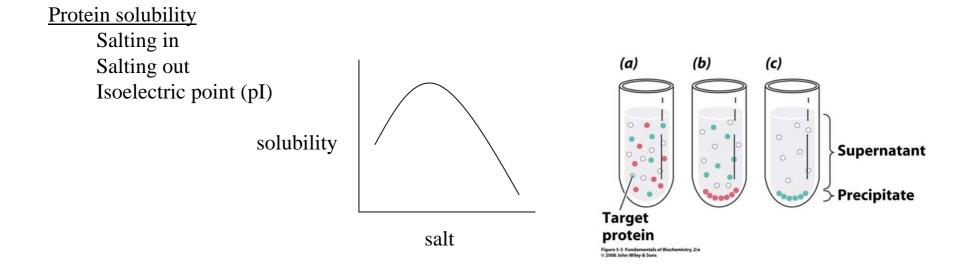



Figure 5-4 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

UV absorption spectrum

Protein characteristic	purification procedure
Solubility	salting out
Ionic charge	ion exchange chromatography
	electrophoresis
	isoelectric focusing
Polarity	hydrophobic interaction chromatography
	gel filtration chromatography
	SDS-PAGE
	ultracentrifugation
	ultrafiltration
Binding specificity	affinity chromatography

Separation techniques (fractionation procedures)

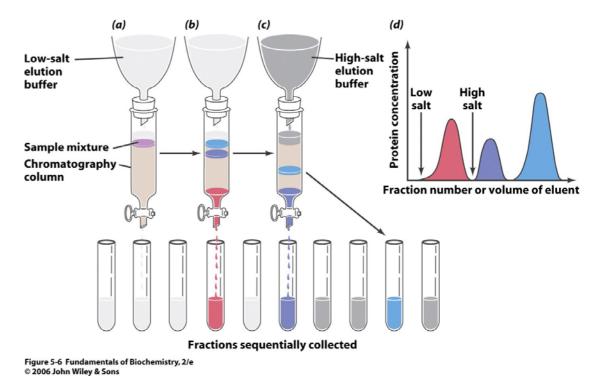


Table 5-2Isoelectric Points of SeveralCommon Proteins

Protein	p <i>I</i>
Pepsin	<1.0
Ovalbumin (hen)	4.6
Serum albumin (human)	4.9
Tropomyosin	5.1
Insulin (bovine)	5.4
Fibrinogen (human)	5.8
γ-Globulin (human)	6.6
Collagen	6.6
Myoglobin (horse)	7.0
Hemoglobin (human)	7.1
Ribonuclease A (bovine)	9.4
Cytochrome c (horse)	10.6
Histone (bovine)	10.8
Lysozyme (hen)	11.0
Salmine (salmon)	12.1

<u>Chromatography</u> Mobile phase & stationary phase (matrix) Matrix type: paper, gel, HPLC

<u>Ion exchange chromatography:</u> electric charge Anion exchangers: DEAE Cation exchangers: CM

Hydrophobic interaction chromatography: hydrophobicity phenyl, octyl (C8), C18, etc

Gel filtration chromatography: molecular sieve: size & shape

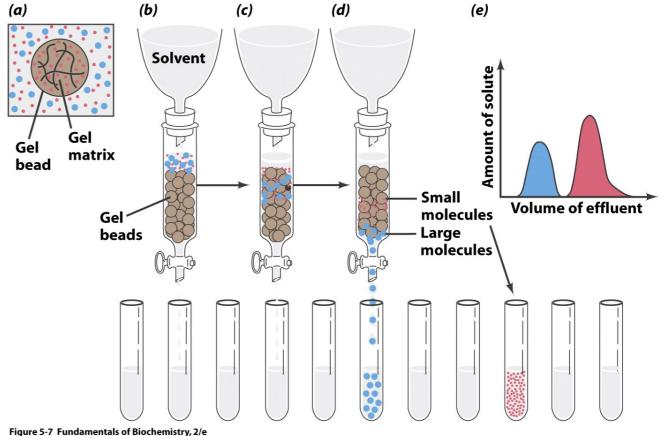


Figure 5-7 Fundamentals of Biochemistry, © 2006 John Wiley & Sons

Affinity chromatography

Spacer Ligand: substrate, inhibitor, etc

Immunoaffinity chromatography Metal chelate affinity chromatography

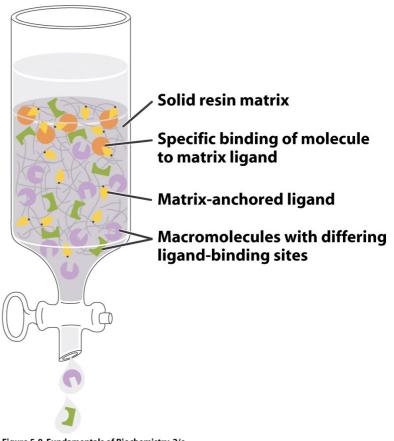


Figure 5-8 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Electrophoresis

Depends on size, shape, electric charge

Polyacrylamide Agarose paper

SDS-PAGE

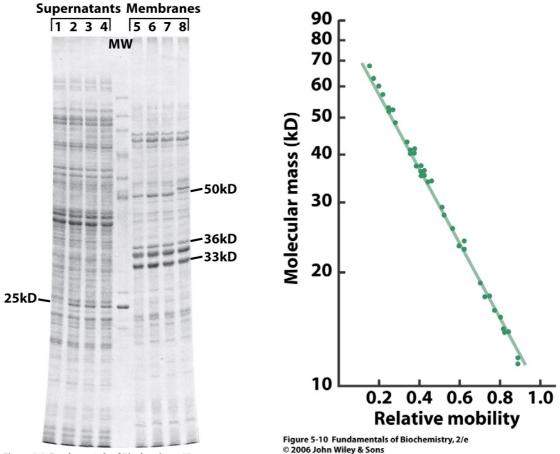
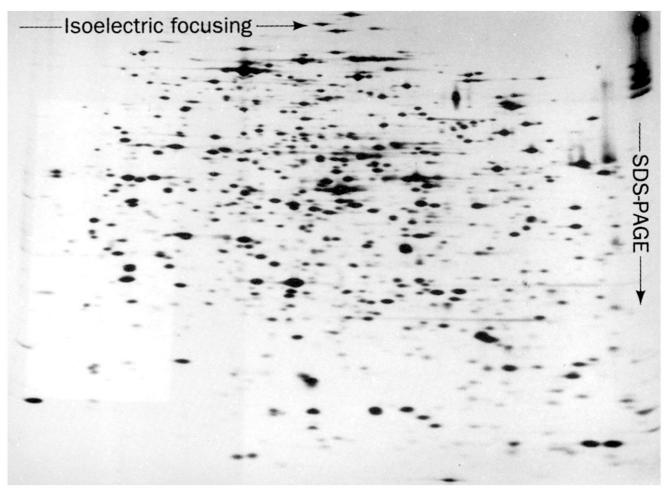
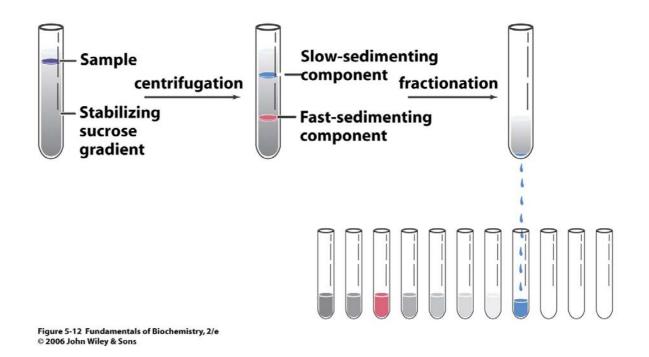


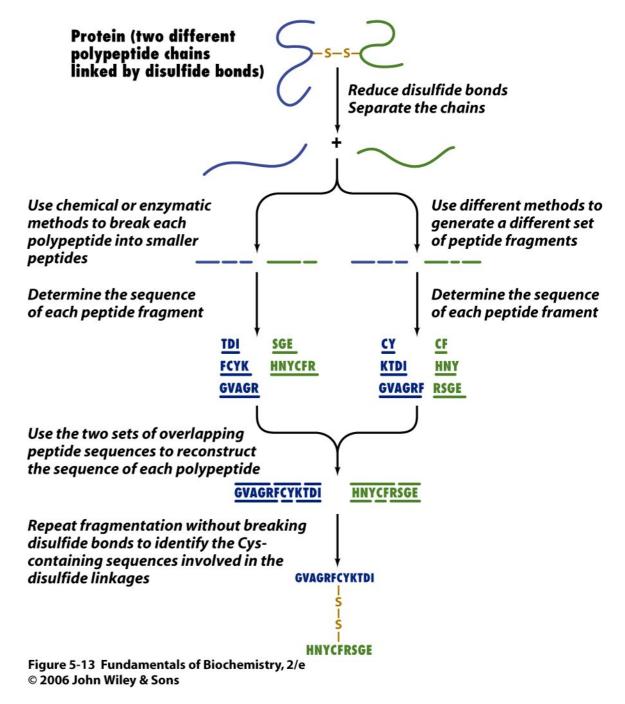
Figure 5-9 Fundamentals of Biochemistry, 2/e

IEF & 2D-PAGE




Figure 5-11 Fundamentals of Biochemistry, 2/e

Ultracentrifugation


Sedimentation rate: depends on mass, shape, density of the solution Svedbergs (S) units: (10^{-13} s) 40S + 60S = 80S (not 100S)

Zonal ultracentrifugation: premade density gradient

Equilibrium density gradient centrifugation: CsCl

Protein sequencing

N-terminal sequencing

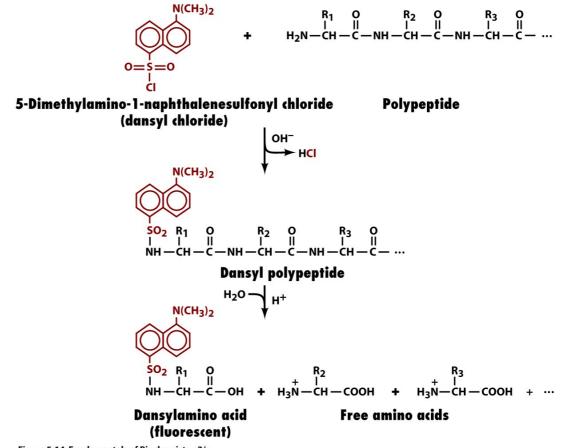
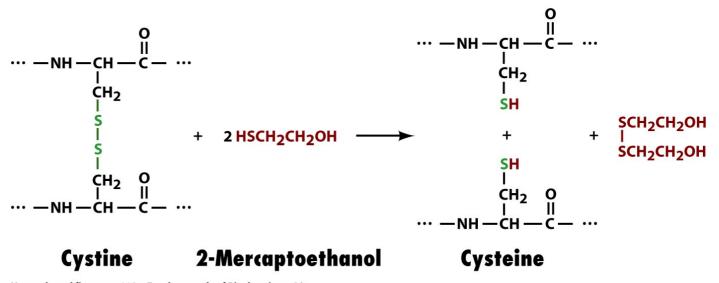
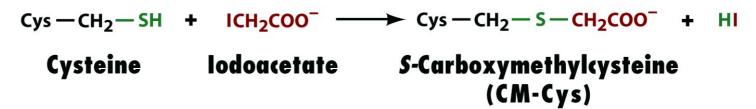
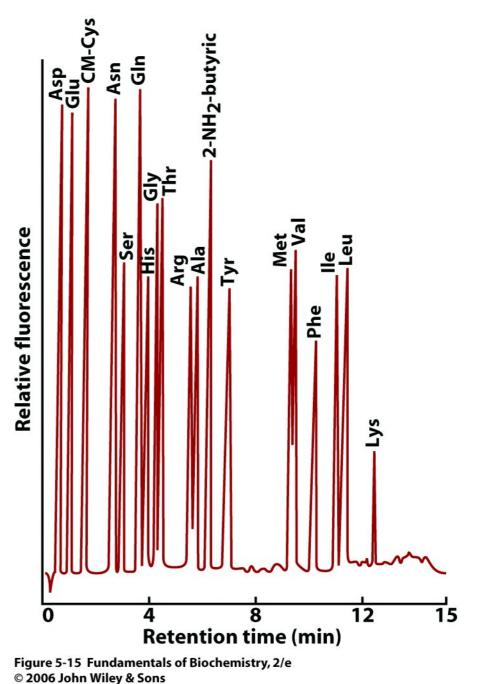
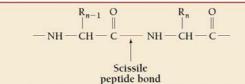




Figure 5-14 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Disulfide bond cleavage

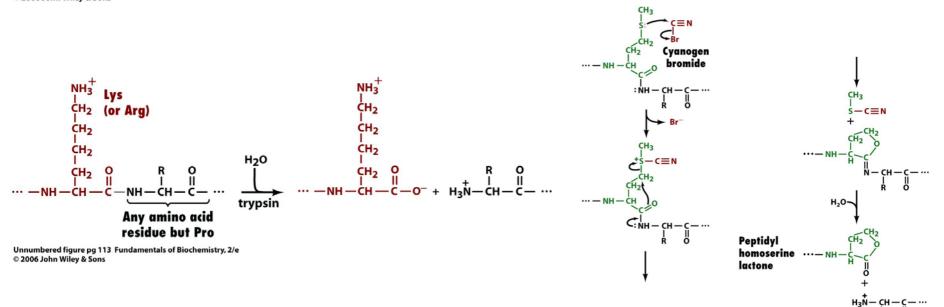


Unnumbered figure pg 112a Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons



Unnumbered figure pg 112b Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Amino acid composition Hydrolysis Derivatization HPLC

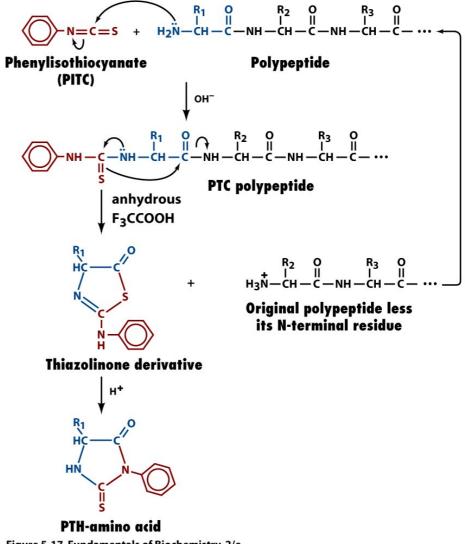
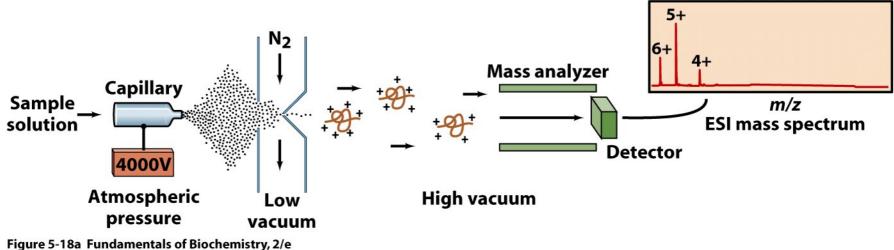

Table 5-3 Specificities of Various Endopeptidases

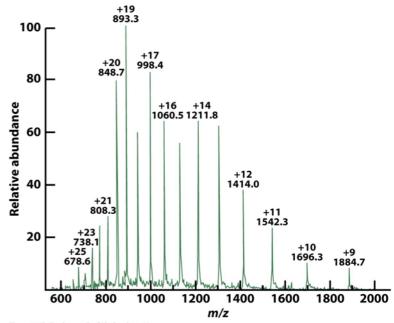
Enzyme	Source	Specificity	Comments
Trypsin	Bovine pancreas	R_{n-1} = positively charged residues: Arg, Lys; $R_n \neq$ Pro	Highly specific
Chymotrypsin	Bovine pancreas	R_{n-1} = bulky hydrophobic residues: Phe, Trp, Tyr; $R_n \neq$ Pro	Cleaves more slowly for $R_{n-1} = Asn, His, Met,$ Leu
Elastase	Bovine pancreas	$R_{n-1} =$ small neutral residues: Ala, Gly, Ser, Val; $R_n \neq$ Pro	
Thermolysin	Bacillus thermoproteolyticus	$R_n = $ Ile, Met, Phe, Trp, Tyr, Val; $R_{n-1} \neq $ Pro	Occasionally cleaves at $R_n = Ala, Asp, His,$ Thr; heat stable
Pepsin	Bovine gastric mucosa	$R_n = Leu, Phe, Trp, Tyr; R_{n-1} \neq Pro$	Also others; quite nonspecific; pH optimum = 2
Endopeptidase V8	Staphylococcus aureus	$R_{n-1} = Glu$	

Polypeptide cleavage Enzymatic Chemical

Table 5-3 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Edman degradation


Figure 5-17 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Sequencing by mass spectrometry

Mass-to-charge ratio (m/z) for ions in the gas phase Electron spray ionization (ESI)

© 2006 John Wiley & Sons

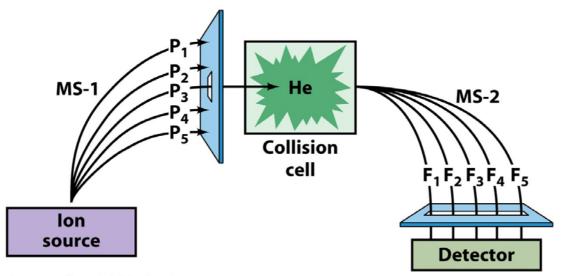


Figure 5-19 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

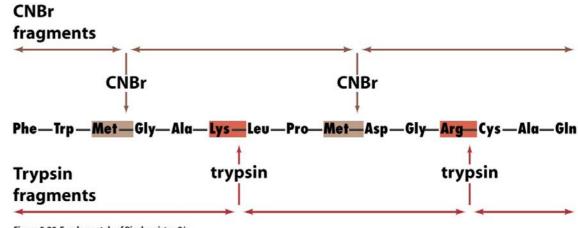


Figure 5-20 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

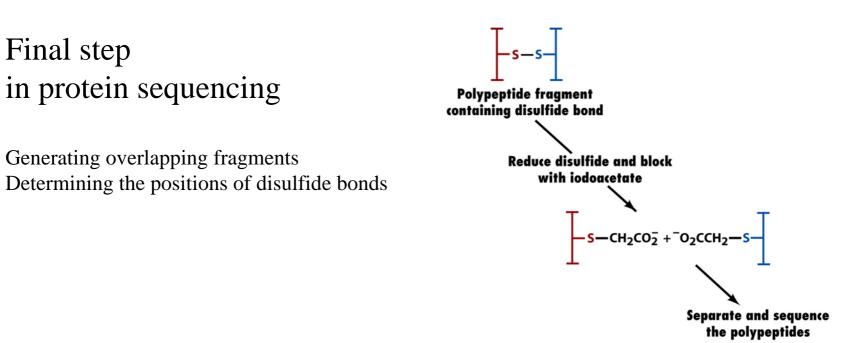


Figure 5-21 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Table 5-4 Internet Addresses for the Major Protein and DNA Sequence Data Banks

Data Banks Containing Protein Sequences

ExPASy Molecular Biology Server (Swiss-Prot): http://au.expasy.org Protein Information Resource (PIR): http://pir.georgetown.edu/ Protein Research Foundation (PRF): http://www4.prf.or.jp/ UniProt: http://www.ebi.uniprot.org/

Data Banks Containing Gene Sequences

GenBank: http://www.ncbi.nlm.nih.gov/Genbank/GenbankSearch.html European Bioinformatics Institute (EBI): http://srs.ebi.ac.uk/ DBGET/Integrated Database Retrieval System: http://www.genome.ad.jp/dbget

Table 5-4 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

General information about t	the UniProt/Swiss-Prot entry
Entry name	RSN_HUMAN
Primary accession number	Q9HD89
Entered in Swiss-Prot	Release 40, 16-OCT-2001
Sequence was last modified	Release 40, 16-OCT-2001
Annotations were last modified	Release 44, 05-JUL-2004
Protein description	
Protein name	Resistin precursor
Synonyms	Cysteine-rich secreted protein FIZZ3 Adipose tissue-specific secretory factor ADSF C/EBP-epsilon regulated myeloid-specific secreted cysteine-rich protein Cysteine-rich secreted protein A12-alpha-like 2 UNQ407/PRO1199
Origin of the protein	
Gene	Gene name RETN Synonyms RSTN, FIZZ3, HXCP1
From	Homo sapiens (Human)[TaxID:9606]
Taxonomy	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.

Protein evolution

Protein sequence evolution

Sequence comparison

Invariant residue Conservatively substituted Hypervariable Neutral drift

TABLE 5-5 Amino Acid Sequences of Cytochrome c from 38 speciesa

	Annio An		~						_	' 7					-		•					-	-	-	r	•				·	_			_	_		_	_	
-		-9		-5		-	1			5				10				5			20				25				30		_		35		_	_	40		_
1	 Human, chimpanzee 	П	П	Т	П		G	DV	/ E	K	GP	K	Π	E	M	K	C S	0	C	H 1	V	E	K	6 6	K	H	K	r G	P	N	LP	1 6	L	F	GF	k K	T	G	Q A
	Rhesus monkey						G	D١	/ E	ĸ	GP	к к	1	F	M	ĸ	c s	0	c	81	r v	E	ĸ	6 0	ĸ	н	ĸ	r G	P	N	LP	1 6	L	F /	G F	łκ	T	G	QA
	Horse						G	DV	/ E	ĸ	GP	ĸĸ			0	K	CA	0	c	8 1	v	E	ĸ	6 6	ĸ	н	ĸ	rG	P	N	L	1 6	L	F /	GF	λ K	T	G	A
	Donkey						G	DN	/ E	K	G	KK	1	F 1	1 9	K	CA	9	¢	H 1	V	E	K	6 6	K	H	K	G	P	N	LI	G	L		GF	t K	T	G	QA
ΞJ	Cow, pig, sheep						G	DN	/ E	K	GP	ĸĸ	1	F 1	0	K	CA	0	c	H 1	v	E	K	6 6	K	H	ĸ	r G	P	N	L	1 6	L	F /	GF	2 K	T	6	0 A
Mammals	Dog						G	DV	/ E	K	G	ĸĸ		F 1	0	K	C A	0	c	н 1	v	E	K	6 6	K	H	ĸ	ſG	P	N	1.	G	L	F	GF	ĸ		G	0 A
ŝ	Rabbit						6	D	/ -	ĸ	GI		H		0	ĸ	c	0	c	н 1	v		ĸ	6 6	ĸ	H	ĸ		P	N	1	G		F	6 1	e K	9	e la	0 4
_	California gray whale						6			ĸ	C I		н		0	R.	c a	0	è		v		R	6 6		H			P		i li				e r		Q.		OA
	Great gray kangaroo						G	D	E	ĸ	G	ĸĸ	i	F																									
	Chicken, turkey																																						
	Pigeon					11	G	PI		K	G	KK	4																										QA
s	Pigeon Pekin duck					1	G	DI	E	K	G	ĸĸ	ч				C S																						0 4
Other vertebrates						11	G	P١	E	ĸ	G	KK	1	•	9	K	c s																					e	QA
Other	Snapping turtle					14	G	D١	/ E	ĸ	G	ĸĸ	1	F	0	K	CA				v										1							G	Q A
t d	Rattlesnake					11	G	DV	/ E	ĸ	G	KK	1	F			c s																						QA
- P	Bullfrog					1	G	D١	/ E	к	GI	ĸĸ		F																									QA
>	Tuna					1	G	D١	/ A	K	GI	ĸĸ	T	•			c A																						QA
ļ	Dogfish					1	G	D١	/ E	ĸ	G	ĸĸ	۷	۲	9	ĸ	c A	1	¢	H	v	E	N	6 6	K	н	ĸ	G	P	N	L	S G	L	۲	GF	t K	T	e	Q A
~	Samia cynthia (a moth)				G	VP	G	N /	E	N	G	ĸĸ	1	F	0	R	c .	0	c	н	v	E	A	6 6	ĸ	н	ĸ	/ G	P	N		4 G	F	Y	6 6	k K	T	G	
Ű	Tobacco hornworm moth			h	G	Vol	G	N A		N	G	ĸĸ		F 1	0	R	CA	0	c	8 1	v		A	6 6	ĸ	H	K	/ 0	P	N	LIT	1 6	F	E	GF	a K		6	QA
Insects	Screwworm fly			h	G	VP	G	DV		K	Gr	ĸĸ																											OA
-	Drosophila (fruit fly)				6	VP	G	D		ĸ	GI				0	R	c	0	c	н 1	v			6 6		H	K	1 6	P		1	6			e r	ĸ	9	6	0
																	1	1														1			1				1
-	Baker's yeast			hT	E	FK	G	5 1	K	K	G /	A T	ι	F	K T	R	cι	9	¢	н 1	v	E	ĸ	6 6	P	H	K	1 6	P	N	L	1 G		F	GF	t H	5	G	Q A
Ĕ.≺	Candida krusei (a yeast)		h	PA	P	FE	G	5 1	K	K	G /	A T	L	F I	K T	R	C A	0	c	н 1	r i	E	A	6 0	P	н	K	1 9	P	N	LP	1 6		F /	S F	2 н	5	G	QA
Fungi	Neurospora crassa (a mold)			h	G	1 5 /	G	DS	K	K	G /	A N	ι	1	K T	R	c A	1 0	¢	H 1	r L	E	E	6 6	G	N	ĸ	G	P	A	1	I G	ι		G F	t K	T	G	s v
	Wheat germ								1.																														
	Buckwheat seed	0	4 5	FS	E	API	G	NF	P		G	AK	4	F	K T		C																						
5	Sunflower seed	0	A T	FS	E	A P I	G	N	K	S	GI	EK	1	F	C T			1 0																					T
Higher plants		0	1 5	FA	E	A P I	G	DF	T	T	G /	A K	ч	F	C T		c			H 1	V																		T
a	Mung bean	a /	1 5	18	E	A P I	G		K	S	GI	EK	ч	1	K T		CA			81	V										L								τIT
- 21	Cauliflower	0	1 5	FB	E	A P I	G	B	K	A	G	EK	н	F I	K T		CA			H 1											L								TT
ē	Pumpkin	0 /	1 5	FB	E	A P I	G	BS	K	A	G	EK	П	F	K T	K	CA																						τIT
6	Sesame seed	0 /	1 5	FB	E	A P I	G	B	/ K	5	GI	EK	П	F	K T	K	CA	0	C	81																			TT
Ξ	Castor bean	0	1 5	FB	E	API	G	B	K	A	G	EK	1	F	K T		C A			H 1																			т
	Cottonseed	0	1 5	FZ	E	API	G	8 /	K	A	G	EK	1	F	K T	K	CA	0	c	H 1	V	D	K	G /	G	H	K	0	P	N	L	1 6	ι	F	GF	1 0	5	6	TT
	Abutilon seed	0 1	1 5	FZ	E	API	G	B /	K	A	G	EK	1	F	K T	K	CA	0	¢	H 1	V	E	K	GA	G	H	K	2 6	P	N	L	1 6	L	F	GF	2 0	5	G	TT
	Number of different amino acid	5					1	3 5	5 5	5	1 3	3 3	4	1.4	4 3	2	1 3	1	1	1.1	4	2	4	1 3	3	2	1.	1	1	2	1 3	5 1	3	3 :	2 1	3	2	1 3	3 3

^aThe amino acid side chains have been shaded according to their polarity characteristics so that an invariant or conservatively substituted residue is identified by a vertical band of a single color. The letter a at the beginning of the chain indicates that the N-terminal amino group is acetylated; an h indi-cates that the acetyl group is absent.

Source: After Dickerson, R.E., Sci. Am. 226(4); 58–72 (1972), with corrections from Dickerson, R.E., and Timkovich, R., in Boyer, P.D. (Ed.), The Enzymes (3rd ed.), Vol. 11, pp. 421–422, Academic Press (1975). Table copyrighted © by Irving Geis. Table 5-5 part 1 Fundamentals of Biochemistry, 2/e

	45					50					5	5					6	0				e	5					7	0				7	75					8	0				1	85					9	D					95					10	00			P	04	
P	G	Y	s	Y	T	A	A	N	K	N	K	1	;	I	I	W	G	E) '	T	L	M	E	Y	L	E		1	P	K	K	Y	I	P	G	T		(1	1	I	•	V	G	I	K	K	K	E	E		1		D	L	I	A	Y	L	R	()	K	4	T	N	E	
P	G	Y	s	Y	T	A	A	N	K	N	K	1	;	I	1	W	G) '	T	L	M	E	Y	L	E	1	1	P	K	K	Y	I	P	G	T	I	()	1	I	F	V	G	I	K	K	K	E	E	F	2 /	1	D	L	I	A	Y	L	K	()	K	4	A I	N	E	
P	G	f	Ţ	Y	I	D	A	N	K	N	K	9		!	Ţ	W			I		ſ	1	M	E	Y	L	E	-			K	K	Y	!	P	G			()		J			GG	!	K	K	K	I		5			D	ł.	!	A	Y	-	K				1	N	5	
P	G		5	Ţ	-	D	A	N	K	N	K			1	-							1		F	T	-					K	K	ľ	1	P	G	1.				ł			G	1	ĸ	K	K	1		1		ł	D	ł	1	A	T V	Ľ								
P	G	į.	5	v	÷		A .	N	ĸ	N				1	T	W	6		ł			1	M		v	ì						ĸ	v		P	G	17					1		G	÷		K	T	G						ì.	ł	A	v	ľ								
v	G	÷.	s	Ŷ	÷	D	Ā	N	K	N				i	÷	w						1		E	Ŷ	ì	100					ĸ	Ŷ	1	P	G	i				1	1		G	i	ĸ	K		D						ĩ	i	Ā	Y	ì			2		r i	Â	È.	
v	G	Ē	s	Y	Ť	D	A	N	K	N	K			i	T	W	G		ł		r		M	E	Y	L	E				ĸ	ĸ	Y	i	P	G	T				1		A	G	i	ĸ	K	K	G					D	ĩ	i	A	Y	1					r r	N	E	
P	G	F	T	Y	T	D	A	N	K	N	K		;	I.	I	W	G) '	T	L	M	E	Y	L	E	Þ	1		ĸ	ĸ	Y	I.	P	G	T		()	1	ı,	F	A	G	ı	ĸ	K	K	G	E	5		1	D	L	ī	A	Y	L	R	()	ĸ	4	r (N	E	
E	G	F	S	Y	T	D	A	N	K	N	K	(1	T		G				T	L	M	E	Y	L	100			P		K	Y	I	P	G	T	F		1		F	A	G	1	K	K	K	S	E	F	1 1	1	D	L	1	A	Y	L	K	1	D	1	1 :	5	ĸ	
E	G	F	S	Y	Ţ	D	A	N	K	N	K	-		!	I	W					ſ		M	E	Y	1	E					K	Y	!	P	G	I		(ł		A	G	!	ĸ	K	K	A		1			D	ł	!	A	Y	-	N		2/		1	A	K	
E	6	1	2	Ţ	-		A	N	ĸ	N	K			1	1	W			ŀ	2		1			T V	÷	-				- 1	K	ľ	i	P	G	1.				1	1		G	ł	ĸ	K	K	S				- 10		÷.	ł	A	ľ	Ľ					1	A		
v	G	v	5	v	÷	-	~	N	K	N			2	1	÷		6					1			v	ì	F					ĸ	v		P	G								G	ł	S							10	N	ĩ.	ł		v	ľ								
	G	i.	s	Ŷ	ř	D	Ā	N	ĸ	N				i	T	w	G					1		E	Ŷ	ĩ	100					ĸ	Ŷ	i	P	G	1.						-	G	ĩ	ĸ	K	K	G							i	Ā	Y	i					c	s		
E	G	Y	s	Ŷ	Ť	D	A	N	ĸ	s	K			i	V	W	N		ľ		T		M	E	Ŷ	L	E					ĸ	Y	i	P	G		H						G	i	ĸ	K	K	G	E	5				ĩ	v	A	Y	L	K		s			s		
Q	G	F	s	Y	T	D	A	N	K	s	K		;	I	T	W	0	1	2	E 1	r	L	R	I.	Y	L	E		1	P	K	K	Y	ī	P	G	T		(1			F	A	G	L	ĸ	K	K	s	E	5	1	2 1	D	L	I.	A	Y	L		()	K 1	r į	A /	A	s	
																																																				ł											ł		t.	٩.	
P	G		S	Y	S	N																- 1			Y	L	E								P	100	T		()	1										E				D	L	I	A		L	K		E	5	11	ĸ	•	
P	G	F	S	Y		N						18		- 1							ſ	Ľ	F	E	Y	-	10				K		Y	!	P	G	T				1	F				K				E		16	- 11		L.	!	A	Y	L	N	1	2	4	1	ĸ	•	
A	G		•	Y		NN	-		K	1.11	100		•	7.1					11			-			Y	L	E				K	K	Y	ł	P	G	1	ŀ			ł			G	1	ĸ		P	100	E	5			D	ł	ł	A	Y	Ľ						×	•	
A	6	1	A	1		n	A	N	×.	A	1	1	1	1	1	"	1	1	1	1	1	١.	1	-	•	•	5	ľ	"		^	^	1	1	۲	U	ľ	1	1	1	1	1	A	6	•	^	•	ľ	1		ľ		'		1	1	•	1	ľ	1		'	•	1	•		
0	G	Y	s	Y	т	D	A	N	1	ĸ	K		ı,	v	L	w	D					N	s	E	Y	L	т				x	ĸ	Y	1	P	G	Т				1	F	G	G	L	к	ĸ	E	K	D			4	D	ı.	ı.	т	Y	L	R		ĸ		c r	E		
q	G	Y	s	Y	T	D	A	N	K	R	A			V	E	W	A		ľ		r	N	s	D	Y	L	E				x	K	Y	i	P	G	T						G	G	L	ĸ				D				D	ī.	v	T	Y	N					S P	ĸ		
D	G	Y	A	Y	T	D	A	N	K	Q	K		;	I	T	W	D		1	1	r	L	F	E	Y	L	E		1	P	x	K	Y	i.	P	G	T	1	()	1	1	F	G	G	L	ĸ	K	D	K	D		2	1	D	I.	I	T	F	N			E	4	T	A	•	
																												1																								ł															
A	G	Y	S	Y	s	A	-	N	K	N	K	1	1	V	E	W	E		1	٩.	T	L	Y	D	Y	L	L	10		P	X	K	Y	I	P		T		()	1	1	•	P	G	L	X	K	P	100		F	2 1	1	D	L	1	A	Y	L	K		K	4	1	5	S	
A	G	Y	S	Y	S	-	A	N	K	N	K	ľ	1	V	T	W	G		l	2	ſ	-	Y	E	Y	L	L	P P			X	K	Y	!	P	G							P P	G	L	X	K	P			5		1	D	Ľ	!	A	Y	Ľ	K			5	1	-	•	
A	G	Y V	5	Y	5	A	A	N	K	N		1		v	ł					,			Y	D	Y	-	-				×	K	Y	!	P	G								G	÷	X	K	P	100						ł	1	A		Ľ			1			A		
A	G	Y	s	Y	s	-	Â	N	ĸ	N				v	E	w		ŀ		ì.		ì	Y		Y	ì	E				Ŷ	ĸ	Y	i	P	G	ľ			l		1	•	-	ĩ	x	K	12		D			10		ĩ	i	Δ	Y	ì			ł		r í			
P	G	Ŷ	s	Y	s	A	A	N	K	N	R			v	ī	W		ł		ċ	T	ī	Y	D	Ŷ	ī					x	ĸ	Y	i	P	G	T						- 8		ī	x	K	P	100	10				D	- T	i	A	Y	1	N				r /	A		
P	G	Y	s	Y	s	A	A	N	K	N	N	1		V	I	W	G		1	۱.	T	L	Y	D	Y	L	E		1	•	x	K	Y	1	P	G	T		(A	1	1	F	P	G	L	x	K	P	q	E				D	L	ı	A	Y	L			E /	4	r /	A		
A	G	Y	s	Y	s	A	A	N	K	N	N	1	1	V	Q	W	G			۱.	T	L	Y	A	Y	L	E	Þ	1	P	x	K	Y	I.	P	G	T	I	()	1	1	F	P	G	L	x	K	P	q	D	5	1	1	D	L	ı	A	Y	L	K	1	E /	4	Т	A	•	
	G		s	Y	s	A	A	N	K	N	N	1	1	V	Q	W	G			۱.	T	L	Y	D	Y	L	E		1	P	X	K	Y	I	P	G	T	H	(1	1	1	F		G		X	K	P	100	D									L	K	1	E	5	r /	A	•	
		Y		Y	S	A	A	N	K	N	N	1	1	V	N	W	G			1	ſ	L	Y	D	Y	L	E	Þ			X	K	Y	L	P	G	T		()	1	/ 1			G	-	X	K	P	100	D					-	-	-		L	K		E	5	1	A	•	
6	1	2	3	1	2	5	1	1	2	6	4	1 3	3	2	7	1	7	4	1 4	5 :	2	2	5	4	1	1	3	1	1	1	1	1	1	1	1	1	1	1	1	1	3 1	1	5	1	2	2	1	6	9	2	1	7	7 :	2	2	2	2	2	2	2	2 6	5 4	4	4 :	5	4	
н	y	lr	o	p	hi	li	c,	а	ci	d	ic	::		۵	2	1	۱s	p			E	0	Gl	u																																											
																				_						_	_																																								
н	y	lr	0	p	hi	li	c,	b	a	si	C	:		ł	ł	ł	li	s			K		y	s			R		A	rg	J		X		T	ri	m	e	th	y	IL	ys	5																								
P	ol	aı	;,	u	10	h	a	rg	je	d	:		[E	3	1	٩s	n	0	r	A	sp	,				G		G	ly			N		A	SI	n	[C	2	G	ilr	n																								
													[-	5	5	5e	r		1	Т	1	٢h	r		1	N	1	Tı	p			Y		Ţ	yı			Z		G	ilr	1	01	(51	u																				
н	y	lr	0	p	h	bk	Di	c:						F	ł	1	١	a		(С	0	Cy	s			F		Pl	he	e		I		I	e		[L		Ŀ	e	u																								
													٢	^	Λ		0	et			Ρ	ļ	r	0		-	v	1	v	al																																					
T		а.		-			_		-		E -		1														-	1																																							

Table 5-5 part 2 Fundamentals of Biochemistry, 2/e

Phylogenetic trees

Protein evolve at characteristic rates

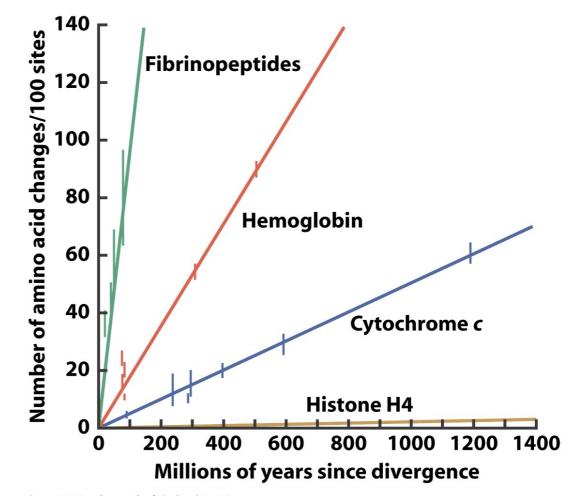


Figure 5-24 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Gene duplication and protein families

Homologous Orthologous Paralogous Pseudogenes

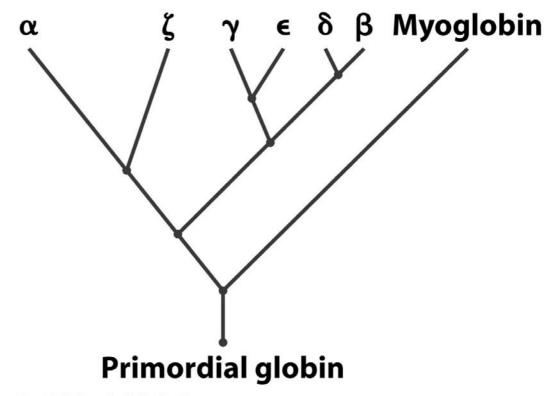


Figure 5-25 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Protein modules


Module Understanding of modular structure

(a) Fibronectin

(b) Blood clotting proteins

Factors VII, IX, X, and protein CFactor XIITissue-type plasminogen activatorProtein S

Key

- 📕 Fibronectin domain 2
- Fibronectin domain 3
- γ-Carboxyglutamate domain
- Epidermal growth factor domain
- 📕 Serine protease domain
- 🔻 Kringle domain
- 📕 Unique domain

Figure 5-26 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons