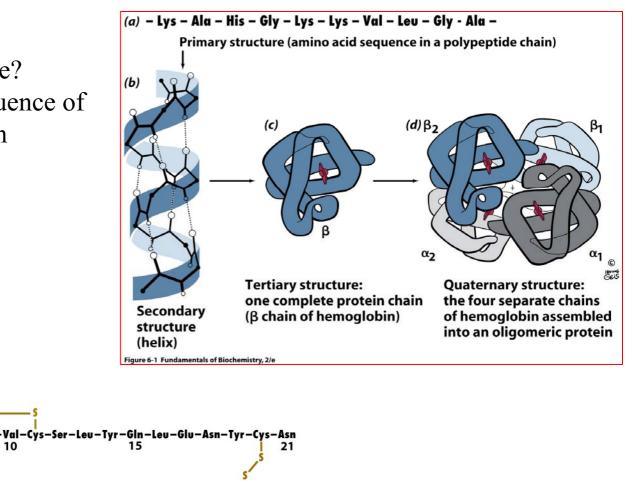
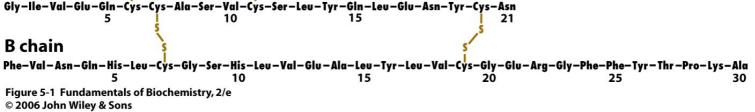
Donald Voet • Judith G. Voet • Charlotte W. Pratt

Fundamentals of Biochemistry Second Edition

Chapter 5: Proteins: Primary Structure

Copyright © 2006 by John Wiley & Sons, Inc.


The great variation in structure and function among proteins



Chapter 5 Opener Fundamentals of Biochemistry, 2/e

Protein structure What is primary structure? The amino acid sequence of its <u>polypeptide</u> chain

A chain

Polypeptide diversity: theoretical possibilities are unlimited

Actual polypeptides are somewhat limited in size and composition

Size: at least 40 residues

The vast majority are between 100 and 1000 residues

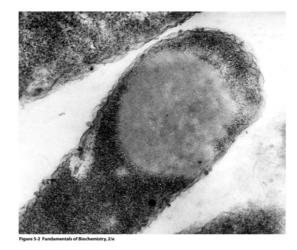
Monomeric & multimeric (multisubunits)

Amino acid composition: average occurrence in proteins (Table 4-1)

	Protein	Amino Acid Residues	Subunits	Polypeptide Molecular Mass (D)
	Proteinase inhibitor III (bitter gourd)	30	1	3,427
	Cytochrome c (human)	104	1	11,617
	Myoglobin (horse)	153	1	16,951
	Interferon-γ (rabbit)	288	2	33,842
	Chorismate mutase (Bacillus subtilis)	381	3	43,551
	Triose phosphate isomerase (E. coli)	510	2	53,944
	Hemoglobin (human)	574	4	61,986
	RNA polymerase (bacteriophage T7)	883	1	98,885
	Nucleoside diphosphate kinase (Dictyostelium discoideum)	930	6	100,764
	Pyruvate decarboxylase (yeast)	2,252	4	245,456
	Glutamine synthetase (E. coli)	5,616	12	621,264
The largest known ———	→Titin (human)	26,926	1	2,993,428

Table 5-1 Compositions of Some Proteins

Table 5-1 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons


Protein purification and analysis

Purification is a mandatory step for studying macromolecules Starting from <0.1% to ~98% purity

A. General approach to purifying proteins Genetic engineering: recombinant proteins Protein source: organism, organs, cellular & subcellular locations

Protein stabilization

pH Temperature Degradative proteins Adsorption to surfaces: air-water interface, glass or plastic surfaces Long-term storage

Protein assay

Assay: quantitative detection Specific, sensitive & convenient

Enzymatic reaction: substrate & product Physiological and artificial substrates Coupled enzymatic reaction Immunoassays: antibody Radioimmunoassay (RIA) Enzyme-linked immunosorbent assay (ELISA)

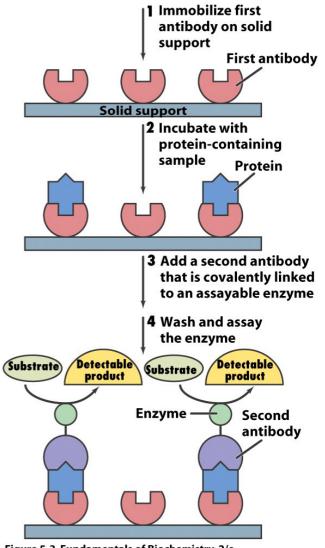


Figure 5-3 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Absorbance spectroscopy

Beer-Lambert law $A = \log (I_0/I) = \varepsilon cl$ A: absorbance (optical density) I_0 : incident light intensity I: transmitted intensity ε : molar absorptivity (molar extinction coefficient) c: molar concentration l: the length of light path

Protein

UV assay: absorption at 280 nm (~1 mg/ml) Chromophore: absorb light in the visible region

Dye-binding assay:

Bradford assay (Coomassie brilliant blue)L at 595 nm

UV-absorption spectra

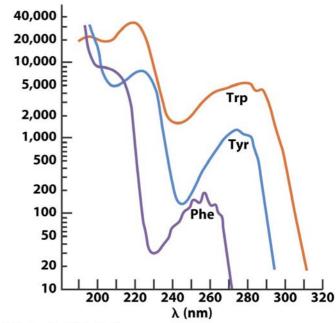
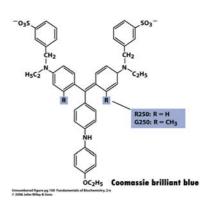
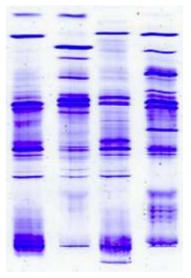
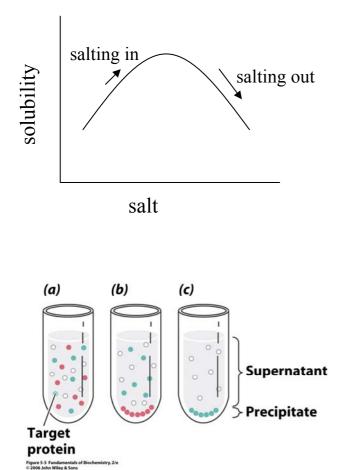




Figure 5-4 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

E



Separation techniques

Purification of target protein by fractionation procedures Selective elimination of the other components Using physicochemical properties of proteins

Protein characteristic	purification procedure
Solubility	salting out
Ionic charge	ion exchange chromatography
	electrophoresis
	ioselectric focusing
Polarity	hydrophobic interaction chromatography
Size	gel filtration chromatography
	SDS-PAGE
	ultracentrifugation
Binding specificity	affinity chromatography

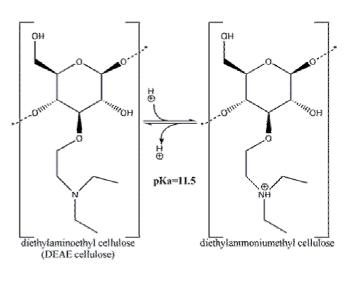
Salting in

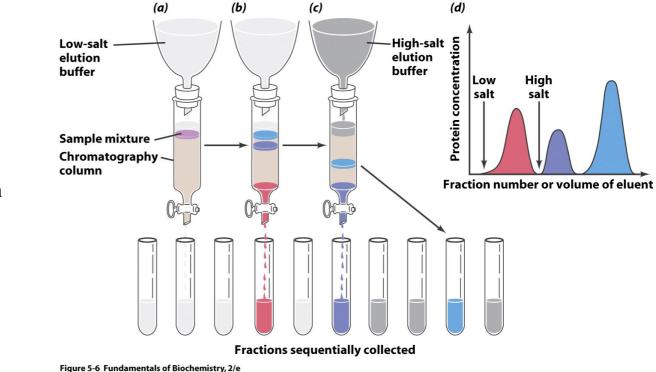
Proteins are polyelectrolytes (polyionic polymers) Proteins are least soluble when its net charge is zero

Table 5-2Isoelectric Points of SeveralCommon Proteins

Protein	p <i>I</i>
Pepsin	<1.0
Ovalbumin (hen)	4.6
Serum albumin (human)	4.9
Tropomyosin	5.1
Insulin (bovine)	5.4
Fibrinogen (human)	5.8
γ-Globulin (human)	6.6
Collagen	6.6
Myoglobin (horse)	7.0
Hemoglobin (human)	7.1
Ribonuclease A (bovine)	9.4
Cytochrome c (horse)	10.6
Histone (bovine)	10.8
Lysozyme (hen)	11.0
Salmine (salmon)	12.1

Table 5-2 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons


Chromatography


Mobile phase: liquid Stationary phase: porous solid matrix From paper chromatography to HPLC

Ion-exchange chromatography

Anion exchanger: diethylaminoethyl (DEAE) Cation exchanger: carboxy-methyl (CM) –CH₂-COO⁻

© 2006 John Wiley & Sons

HIC (hydrophobic interaction chromatography)

Gel filtration chromatography

(size exclusion or molecular sieve chromatography)

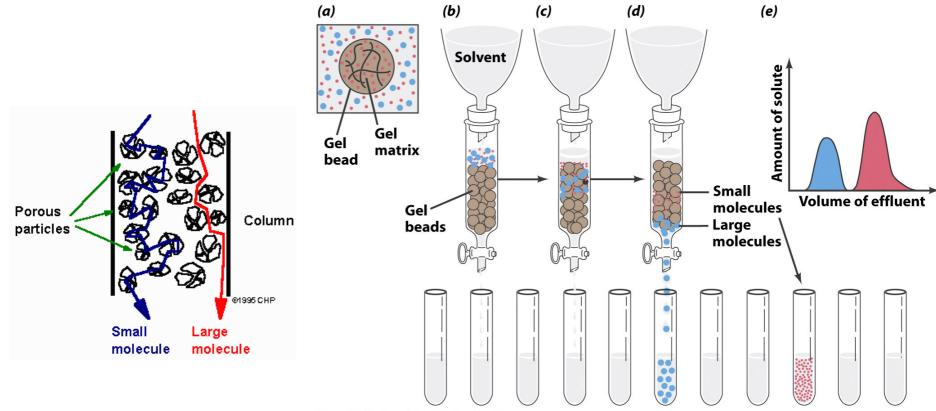


Figure 5-7 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Affinity chromatography

Ligand bound: cAMP, NADH, etc Antibody bound: immunoaffinity chromatography Metal bound: metal chelate affinity chromatography

> Zn2+, Ni2+ his-tag column

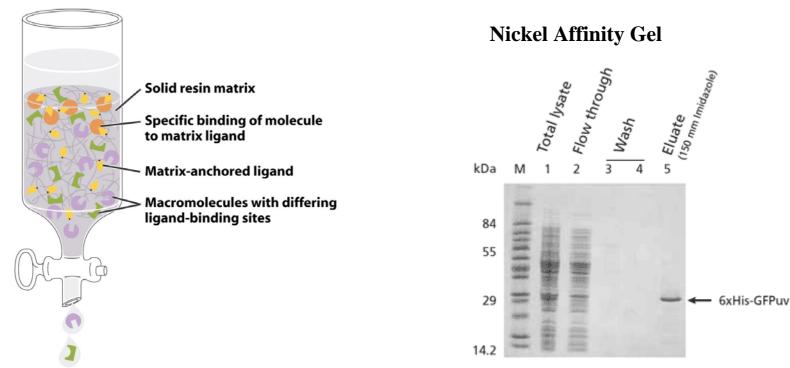
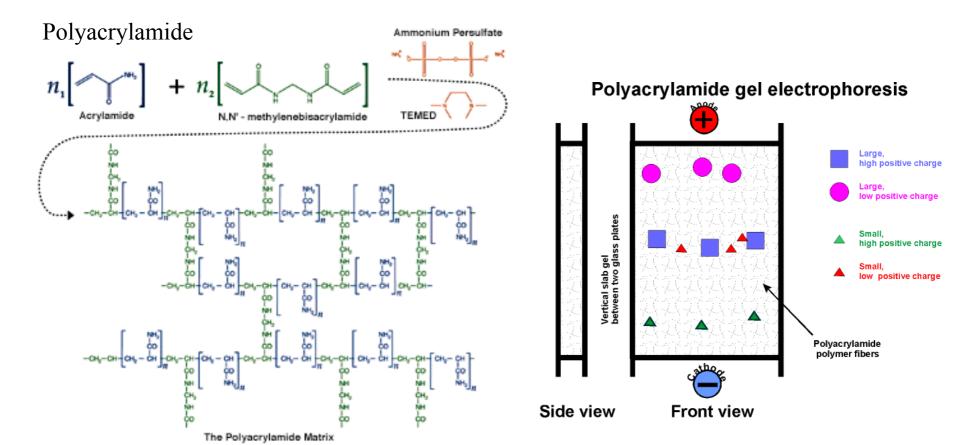



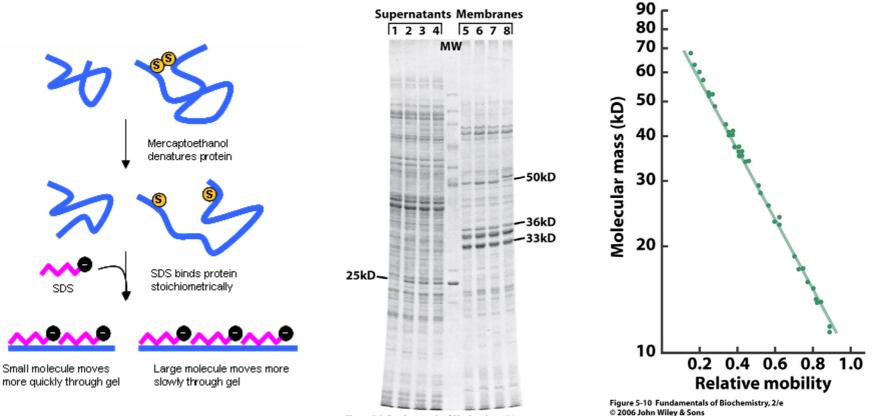
Figure 5-8 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

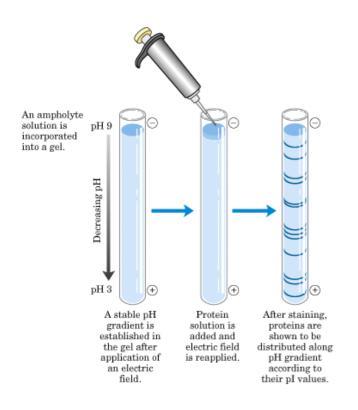
Electrophoresis

Polyacrylamide gel electrophoresis Mobility difference depending on size, shape, electric charge

SDS-PAGE

SDS: sodium dodecylsulfate Uniform binding of SDS to protein and denaturation Net charge is equal in every protein Separation depends on size




Figure 5-9 Fundamentals of Biochemistry, 2/e

Capillary electrophoresis

Electrophoresis in very thin capillary tubes (20-100 um diameter) Dissipate heat and permit high electric fields Fast separation

2D-PAGE

Isoelectric focusing (IEF) & SDS-PAGE Application to proteomics

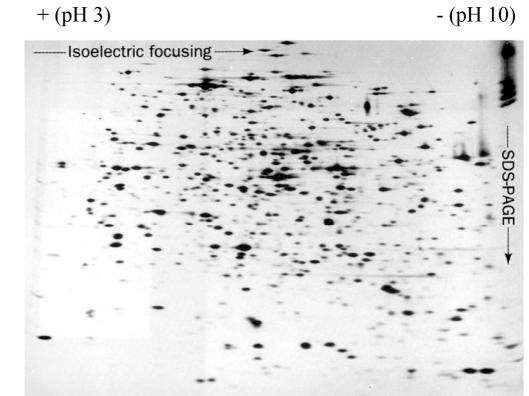
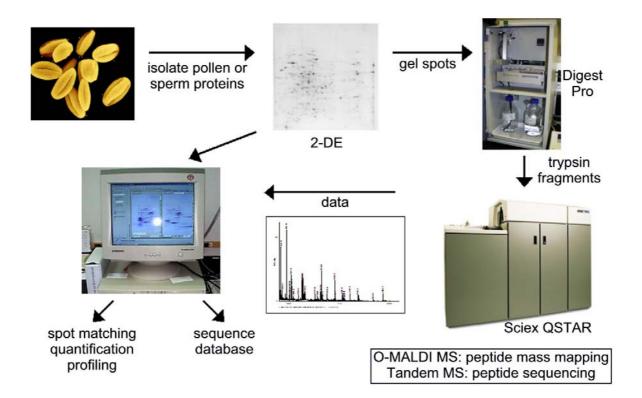
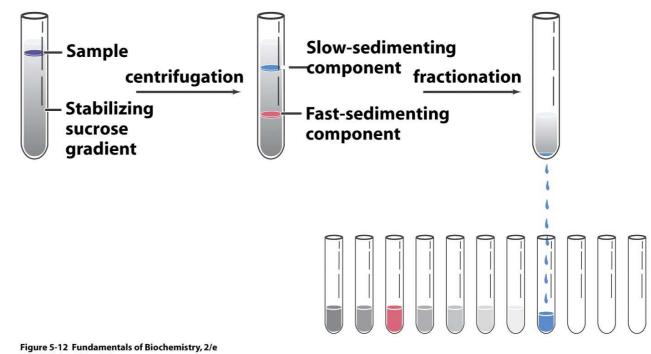
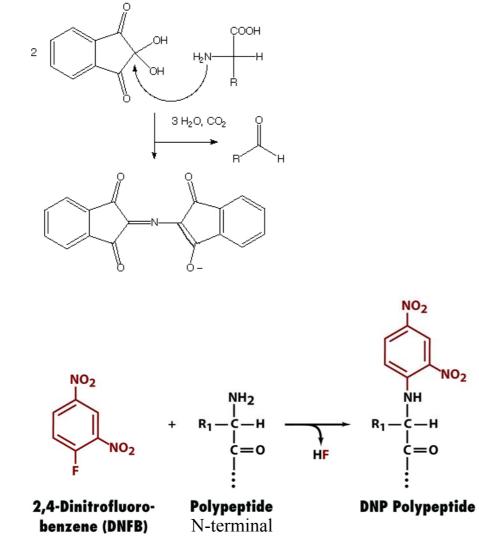



Figure 5-11 Fundamentals of Biochemistry, 2/e



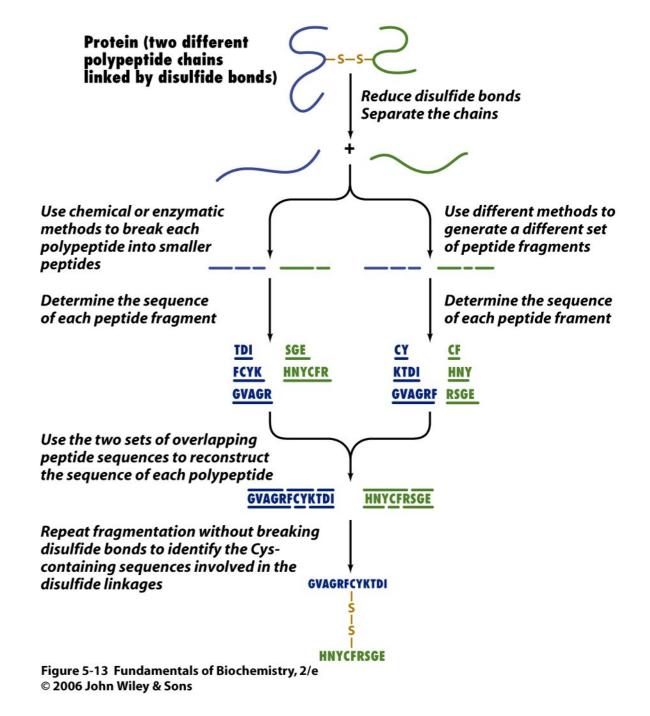
Ultracentrifugation

Analytical


Preparative

Density gradient centrifugation (zonal centrifugation): sucrose, Percoll Equilibrium density gradient centrifugation: CsCl

© 2006 John Wiley & Sons


Staining of amino acids and polypeptides

Box 5-2 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Protein sequencing

Preliminary steps

N-terminal analysis: dansy-chloride

differentiate subunits

Disulfide bond cleavage

Reduction with reducing reagent (2-mercaptoethanol or dithiothreitol): cystine to 2 cysteine

Alkylatio with iodoacetate: Cys to S-carboxymethyl-Cys

Determination of amino acid composition: complete hydrolysis with HCl

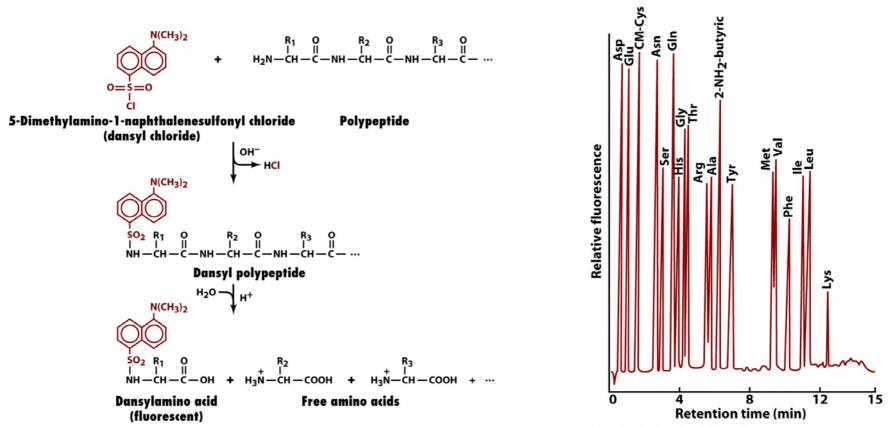
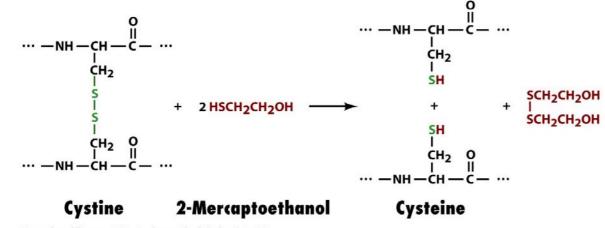
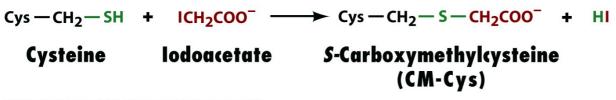
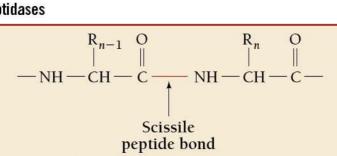




Figure 5-14 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons Figure 5-15 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons


Unnumbered figure pg 112a Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Unnumbered figure pg 112b Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

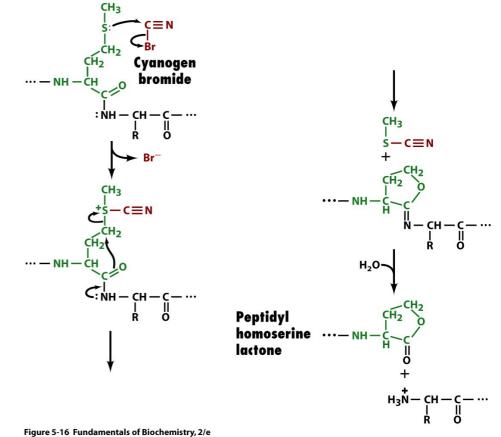
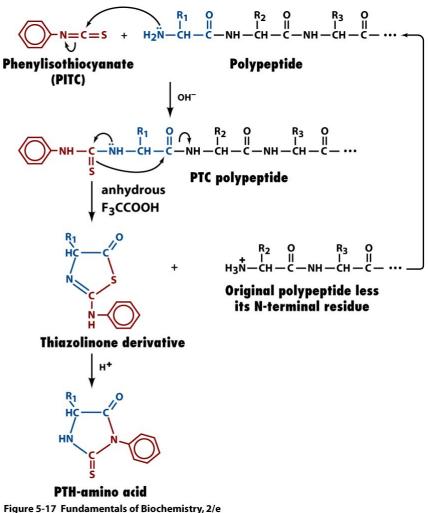

Polypeptide cleavage Endopeptidase exopeptidase

Table 5-3 Specificities of Various Endopeptidases

Enzyme	Source	Specificity	Comments
Trypsin	Bovine pancreas	R_{n-1} = positively charged residues: Arg, Lys; $R_n \neq$ Pro	Highly specific
Chymotrypsin	Bovine pancreas	R_{n-1} = bulky hydrophobic residues: Phe, Trp, Tyr; $R_n \neq$ Pro	Cleaves more slowly for $R_{n-1} = Asn, His, Met,$ Leu
Elastase	Bovine pancreas	R_{n-1} = small neutral residues: Ala, Gly, Ser, Val; $R_n \neq$ Pro	
Thermolysin	Bacillus thermoproteolyticus	$\mathbf{R}_n = $ Ile, Met, Phe, Trp, Tyr, Val; $\mathbf{R}_{n-1} \neq $ Pro	Occasionally cleaves at $R_n = Ala, Asp, His,$ Thr; heat stable
Pepsin	Bovine gastric mucosa	$R_n = Leu, Phe, Trp, Tyr; R_{n-1} \neq Pro$	Also others; quite nonspecific; pH optimum = 2
Endopeptidase V8	Staphylococcus aureus	$\mathbf{R}_{n-1} = \mathbf{Glu}$	


CNBr cleavage: C-side of Met residue

© 2006 John Wiley & Sons

Edman degradation

Sequential cleavage and identification of N-terminal residues Solid-phase sequencing

© 2006 John Wiley & Sons

Sequencing by mass spectrometry

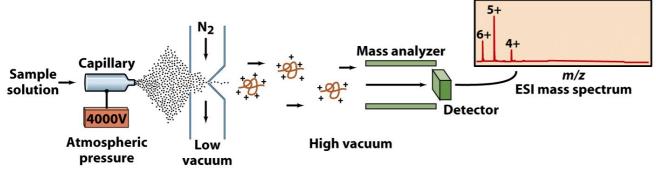
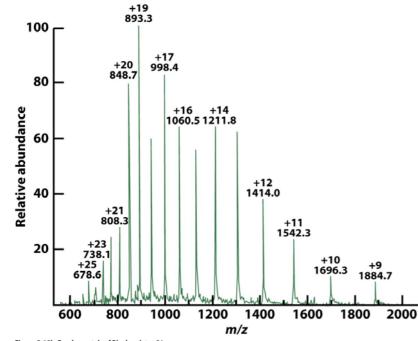



Figure 5-18a Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

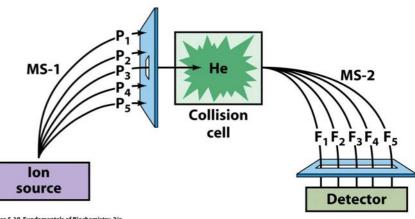
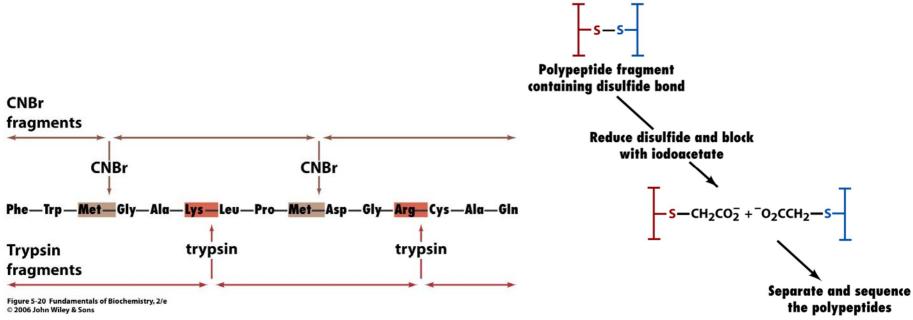



Figure 5-19 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Figure 5-18b Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Reconstructing the protein's sequence

Localization of disulfide bond Cleave protein with its disulfide bonds intact Alkylation and sequencing

Table 5-4 Internet Addresses for the Major Protein and DNA Sequence Data Banks

Data Banks Containing Protein Sequences

ExPASy Molecular Biology Server (Swiss-Prot): http://au.expasy.org Protein Information Resource (PIR): http://pir.georgetown.edu/ Protein Research Foundation (PRF): http://www4.prf.or.jp/ UniProt: http://www.ebi.uniprot.org/

Data Banks Containing Gene Sequences

GenBank: http://www.ncbi.nlm.nih.gov/Genbank/GenbankSearch.html European Bioinformatics Institute (EBI): http://srs.ebi.ac.uk/ DBGET/Integrated Database Retrieval System: http://www.genome.ad.jp/dbget

Table 5-4 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

General information about t	the UniProt/Swiss-Prot entry						
Entry name	RSN_HUMAN						
Primary accession number	Q9HD89						
Entered in Swiss-Prot	Release 40, 16-OCT-2001						
Sequence was last modified	Release 40, 16-OCT-2001						
Annotations were last modified	Release 44, 05-JUL-2004						
Protein description							
Protein name Resistin precursor							
Synonyms Cysteine-rich secreted protein FIZZ3 Adipose tissue-specific secretory factor ADSF C/EBP-epsilon regulated myeloid-specific secreted cysteine-rich protein Cysteine-rich secreted protein A12-alpha-like 2 UNQ407/PRO1199							
Origin of the protein							
Gene name RETN Synonyms RSTN, FIZZ3, HXCP1							
From	Homo sapiens (Human)[TaxID:9606]						
Taxonomy	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.						

Protein evolution

Darwinian evolution: many mutations are deleterious and disappear some mutations are beneficial and survive

Protein sequence evolution

Sequence similarity

Multiple alignment

Evolution from a common ancestor

Evolutionary conservative: the meaning of biological importance

Sequence comparisons provide information on protein structure and function

Homologous proteins

Invariant residues: essential

Conservatively substituted: similar side chains

Hypervariable: nonspecific

If cyt.c is important, why not identical? the random nature of mutational processes: neutral drift depends on tolerable or untolerable

TABLE 5-5 Amino Acid Sequences of Cytochrome c from 38 species^a

		•	-		_	-1			-	5													-					_				_	_		_
	Human, chimpanzee	-9	· · ·	-5			GI	V	-	5			10				5			20			25	_			30			35				40	QA
	Rhesus monkey								E	KG		K	F			C	S Q												HG						
	Horse					a	GI	v	E	KG	1.27	K	IF	11		C	S Q		T								-		HG			1023	22 1000	TG	
s						a	GI	v	E	KG	K	K	IF	171			A Q																	T	G Q A
Ja	Donkey					a	GI	V	E	KG	K	K	I F		K		A Q		T								PN		HG			GF		T	QA
듣く	Cow, pig, sheep					a		V	E	KG	K	K	I F		X	- 1	1000	CH											H G				RK	T	A D
Mammals	Dog					a		V	E	KG	K	K	I F		X	C	100												HG			GF	S K	TO	A Q I
Σ	Rabbit					a	GI) V	E	KG	K	K	I F		K		A Q															GF		TC	QA
	California gray whale					a	G	V	E	KG		K	I F		X		A Q														-	GF		1000	QA
l	Great gray kangaroo					a	G	v	E	KG	K	ĸ	IF	V	K	C	A Q	CH	T	VE	K	GG	K	H	C T	G	PN	1	N G	1	F	GF	S K	TG	Q A
í	Chicken, turkey						6 1							v		0		C 14	T			6 6				G					E	GI		TI	
	Pigeon						6			KG		K			K		s q																		QA
Other vertebrates	Pekin duck					u u	6		-	KG				v			S Q												HG	100		GF	121 1122	10.00	GQA
Other	Snapping turtle					a	0						:[:				AQ												NG				RK		Q A
. 독 Ā 〈	Rattlesnake					a	6 1		-	KG		Ľ.	!!!				S Q												HG	1.1		1.25		1201	QA
ōť	Bullfrog					a	6 1	2 ×	E	KG		K	!!!	T																			RK		AP
ē	Tuna					a	GL	, v	E	KG	K	K	I F	V	3 K	C	A Q	CH	I	CE	K	GG	K	H		G	PN	4	YG	1			RK		AP
-	Dogfish					a				KG				V	SK	C	AQ	CH	T	VE	N	GG	K	HI	C V	G	PN	L	WG	L					G Q A
l	Dogrish					a	GI	v	E	KG	K	K	VF	V	5 K	C	A Q	CH	T	VE	N	GG	K	HI	C T	G	PN	L	SG	L	F	GF	K	TO	QA
(Comio symthic (o moth)																																		
2	Samia cynthia (a moth)			hG	VI	PA	GI	A	122.0	N G	1.00																								QA
Γ _α	Tobacco hornworm moth			hG		p A	GI		D	N G																									QA
Insects	Screwworm fly			hG			GI		E	KG		K	I F				A Q																		QA
= (Drosophila (fruit fly)			hG	VI	P A	G	V	E	KG	K	K	LF	V	R	C	A Q	CH	T	VE	A	GG	K	HI	(V	G	PN	L	HG	L	1	GF	K K	TG	QA
-= (Baker's yeast		h	TE	FI	KA	G	A	ĸ	KG	A	T	LF	ĸ	R	c	LO	CH	т	VE	K	GG	P	н	(v	G	PN	L	HG	1	F	GI	RH	se	QA
5.1	Candida krusei (a yeast)		h P	AP	F	EO	G	A	K		A																								QA
Fungi	Neurospora crassa (a mold)								K	KG	A	N	LF	K	R	C	AQ	CH	T	LE	E	GG	G	NI	(1	G	PA	L	HG	L	F	GI	RK	TC	SSV
	>									-											H														
	Wheat germ	a A	SF	SE	AI	PP	GI	I P	D	A G			I F	K	K	C	A Q	CH	T	VD	A	GA	G	HI	Q	G			HG		F	GI	RQ	SC	TT
	Buckwheat seed	a A	TF	SE	AI	PP	GI	1	K	SG	E	K	I F	K	r K	C	AQ	CH	T	VE	K	GA	G	H	Q	G	PN	L	NG	L	F	GF	RQ	SC	TT
f	Sunflower seed	a A	SF	AE	AI	PP	G	P	T	TG	A	K	I F	K	K	C	A Q	CH	T	VE	K	GA	G	HI	Q	G	PN	L	NG	L	F	GF	RQ	sc	TT
ar	Mung bean	aA	SF	BE	AI	PP	GI	3 5	ĸ	SG	E	K	I F	K	r ĸ	C	AQ	CH	T	V D	K	GA	G	HI	C Q	G	PN	L	NG	L	F	GF	RQ	SC	TT
ם	Cauliflower	aA	SF	BE	AI	PP	GI	3 5	K	AG	E	ĸ	I F	K	K	c	AQ	CH	T	VD	K	GA	G	HI	(Q	G	PN	L	NG	L	F	GF	RQ	SI	TT
آ ھَ	Pumpkin	aA	SF	BE	A	PP	G	3 5	K	AG	E	ĸ	IF				AQ												NG	L	F	GF	RO	SI	TT
Higher plants	Sesame seed	aA	SF	BE	A	PP	G	3 V	K	SG	E	K	IF		K		AO			- 100		200	1.20	1000	100	1000	100		NG			GF	8 0	SI	TT
Ē	Castor bean	aA	SF	BE	A	PP	G	s v	K	AG	E	K	IF		K		AQ												NG			GF	8 0	SI	TT
	Cottonseed	aA	SF	ZF	A	PP	GI		K	AG	E	K	IF	K			AQ												NG			100	8 0	si	TT
	Abutilon seed	aA			A		GI	A	K	AG	E	K	IF	K	K	c	AO	CH	T	VE	K	GA	G	H	(0	G	PN	li	NG	L	F	G	RO	SI	TT
	C Number of different amino acid						haile	3 5	5	5 1	3	3	4 1	4 :	3 2	1	3 1	11	1	4 2	4	1 2	3	2	1 4	1	1 2	1	5 1	3	3	2	13	2 1	33
																															_			_	

^{*a*}The amino acid side chains have been shaded according to their polarity characteristics so that an invariant or conservatively substituted residue is identified by a vertical band of a single color. The letter a at the beginning of the chain indicates that the N-terminal amino group is acetylated; an h indi-cates that the acetyl group is absent.

Source: After Dickerson, R.E., Sci. Am. 226(4); 58–72 (1972), with corrections from Dickerson, R.E., and Timkovich, R., in Boyer, P.D. (Ed.), The Enzymes (3rd ed.), Vol. 11, pp. 421–422, Academic Press (1975). Table copyrighted © by Irving Geis. Table 5-5 part 1 Fundamentals of Biochemistry, 2/e

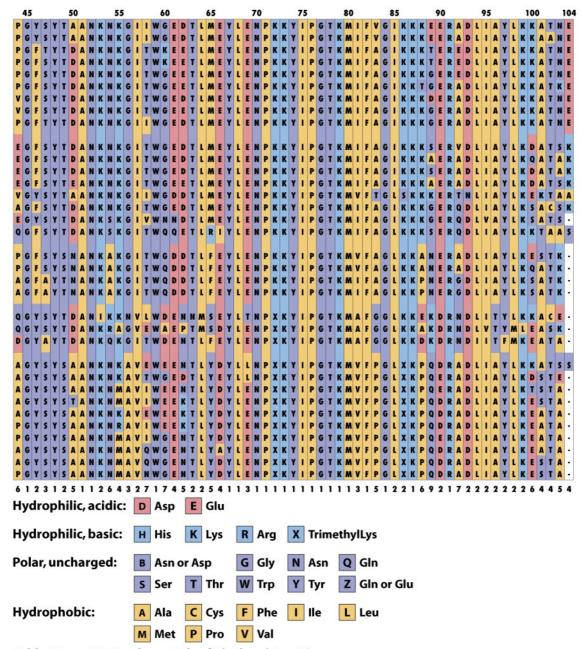
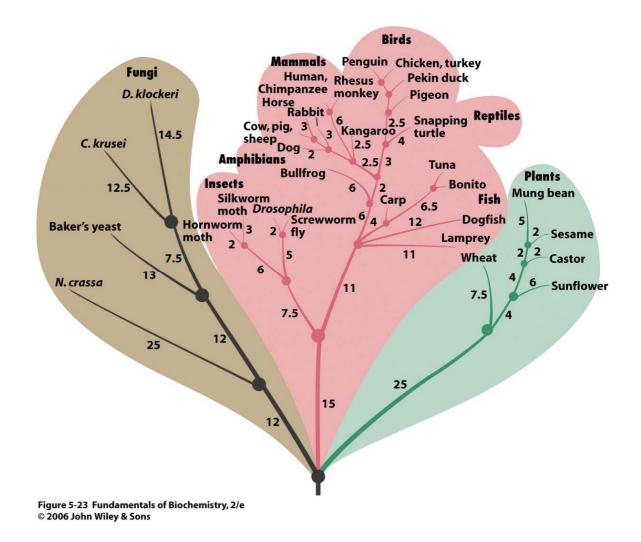
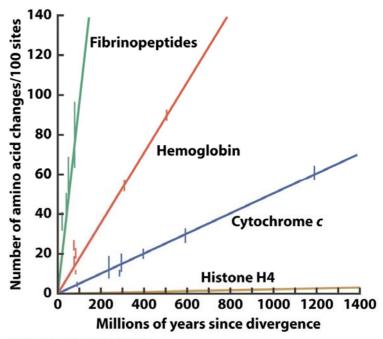



Table 5-5 part 2 Fundamentals of Biochemistry, 2/e

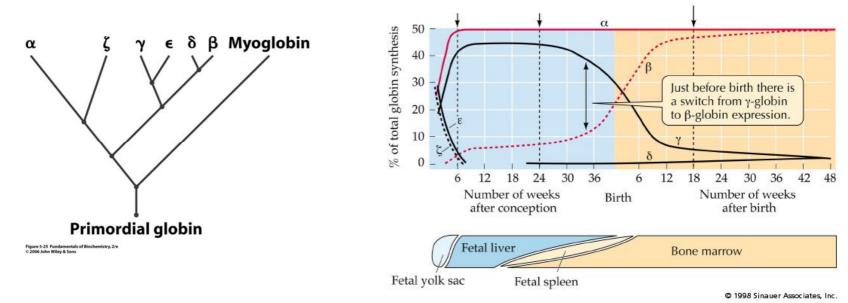
Constructing phylogenetic trees

Evolutionary relationship Computer program to construct phylogeny Quantitative measure of the degree of relatedness

Protein evolve at characteristic rates

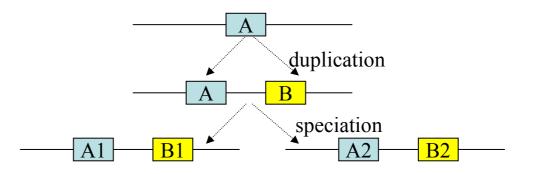

Protein sequence difference plotted against the time when the species diverged The linear nature of mutation rate depending on proteins Mutations accumulate at a constant rate over a geological time scale

Protein sequences do not reveal the complete story of evolution


The proteins of human and chimpanzee are >99% identical

Why then so different between them?

Differences in regulation and expression (time and space) Rearrangements and duplications of genes, giving rise to new proteins

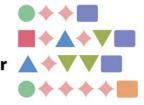

Gene duplication and protein families

Homologous genes: derived from a common ancestor

orthologs: separated by speciation, similar functions and structure paralogs: separated by a duplication event, different but related functions xenologs: lateral transfer between two organisms

***pseudogenes

Protein modules


Modules of ~40-100 amino acid residues exon shuffling

(a) Fibronectin

(b) Blood clotting proteins

Factors VII, IX, X, and protein C Factor XII Tissue-type plasminogen activator Protein S

Key

- 🔺 Fibronectin domain 1
- Fibronectin domain 2
- Fibronectin domain 3
-) γ-Carboxyglutamate domain
- Epidermal growth factor domain
- 📕 Serine protease domain
- 🔻 Kringle domain
 - Unique domain

Figure 5-26 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons