Donald Voet • Judith G. Voet • Charlotte W. Pratt

Fundamentals of Biochemistry Second Edition

Chapter 4:

Amino Acids

Chapter 4 Opener Fundamentals of Biochemistry, 2/e

α-amino acids

α-carbon
Carboxylic acid group
Amino group
R group

General structure

Zwitterionic (dipolar) form (at physiological pH)

 pK_1, pK_2, pK_R

Table 4-1 Key to Structure. Covalent Structures and Abbreviations of the "Standard" Amino Acids of Proteins, Their Occurrence, and the pK Values of Their Ionizable Groups

Name, Three-letter Symbol, and One-letter Symbol	Structural Formula ^a	Residue Mass $(D)^b$	Average Occurrence in Proteins (%) ^c	${}_{ m p}K_1 \ {}_{ m lpha ext{-}COOH}^d$	pK_2 α -NH $_3^{+d}$	$\mathfrak{p}K_{\mathrm{R}}$ Side Chain d
Amino acids with nonpolar	side chains					
Glycine COO^- Gly $H-C-H$ NH_3^+		57.0	7.2	2.35	9.78	
Alanine COO- Ala A H-C-CH ₃ NH ⁺ ₃		71.1	7.8	2.35	9.87	
Valine Val V Val V H-C-CH NH ⁺ NH	Н ₃ Н ₃	99.1	6.6	2.29	9.74	

^aThe ionic forms shown are those predominating at pH 7.0 (except for that of histidine^f) although residue mass is given for the neutral compound. The C_{α} atoms, as well as those atoms marked with an asterisk, are chiral centers with configurations as indicated according to Fischer projection formulas (Section 4-2). The standard organic numbering system is provided for heterocycles.

^bThe residue masses are given for the neutral residues. For the molecular masses of the parent amino acids, add 18.0 D, the molecular mass of H_2O , to the residue masses. For side chain masses, subtract 56.0 D, the formula mass of a peptide group, from the residue masses.

^cCalculated from a database of nonredundant proteins containing 300,688 residues as compiled by Doolittle, R.F. in Fasman, G.D. (Ed.), *Predictions of Protein Structure and the Principles of Protein Conformation*, Plenum Press (1989).

^dData from Dawson, R.M.C., Elliott, D.C., Elliott, W.H., and Jones, K.M., *Data for Biochemical Research* (3rd ed.), pp. 1–31, Oxford Science Publications (1986).

Table 4-1 Key to Structure. Covalent Structures and Abbreviations of the "Standard" Amino Acids of Proteins, Their Occurrence, and the pK Values of Their Ionizable Groups

Name Three-letter sand One-letter	Symbol,	Structural Formula ^a	Residue Mass $(D)^b$	Average Occurrence in Proteins (%) ^c	${}_{f \alpha}K_1$ ${}_{f lpha}$ -COOH d	pK_2 α -NH $_3^{+d}$	pK_{R} Side Chain d
Amino acids Leucine Leu L		CH ₃	113.2	9.1	2.33	9.74	
Isoleucine Ile I	COO- H-C- NH3	CH ₃ C*—CH ₂ —CH ₃ H	113.2	5.3	2.32	9.76	
Methionine Met M	COO ⁻ H-C <mark>-CH₂ NH₃⁺</mark>	CH ₂ -S-CH ₃	131.2	2.2	2.13	9.28	

^aThe ionic forms shown are those predominating at pH 7.0 (except for that of histidine^f) although residue mass is given for the neutral compound. The C_{α} atoms, as well as those atoms marked with an asterisk, are chiral centers with configurations as indicated according to Fischer projection formulas (Section 4-2). The standard organic numbering system is provided for heterocycles.

^bThe residue masses are given for the neutral residues. For the molecular masses of the parent amino acids, add 18.0 D, the molecular mass of H₂O, to the residue masses. For side chain masses, subtract 56.0 D, the formula mass of a peptide group, from the residue masses.

^cCalculated from a database of nonredundant proteins containing 300,688 residues as compiled by Doolittle, R.F. in Fasman, G.D. (Ed.), *Predictions of Protein Structure and the Principles of Protein Conformation*, Plenum Press (1989).

^dData from Dawson, R.M.C., Elliott, D.C., Elliott, W.H., and Jones, K.M., *Data for Biochemical Research* (3rd ed.), pp. 1–31, Oxford Science Publications (1986).

Table 4-1 Key to Structure. Covalent Structures and Abbreviations of the "Standard" Amino Acids of Proteins, Their Occurrence, and the pK Values of Their Ionizable Groups

Name, Three-letter Symbol and One-letter Symbol		Residue Mass $(D)^b$	Average Occurrence in Proteins (%) ^c	pK_1 $\alpha ext{-COOH}^d$	pK_2 α -NH $_3^{+d}$	p $K_{ m R}$ Side Chain ^d	
Amino acids with nonpolar side chains							
Proline Pro COOT P	H ₂ -C -A -C -A -A -C -A	97.1	5.2	1.95	10.64		
Phe H-C	$COO^ C-CH_2$ $OOO^ OOO^ OOO$	147.2	3.9	2.20	9.31		
Trp W H-C	COO- C-CH ₂ 3 IH ₃ 2 N H	186.2	1.4	2.46	9.41		

^aThe ionic forms shown are those predominating at pH 7.0 (except for that of histidine^f) although residue mass is given for the neutral compound. The C_{α} atoms, as well as those atoms marked with an asterisk, are chiral centers with configurations as indicated according to Fischer projection formulas (Section 4-2). The standard organic numbering system is provided for heterocycles.

 $^{^{}b}$ The residue masses are given for the neutral residues. For the molecular masses of the parent amino acids, add 18.0 D, the molecular mass of $H_{2}O$, to the residue masses. For side chain masses, subtract 56.0 D, the formula mass of a peptide group, from the residue masses.

^cCalculated from a database of nonredundant proteins containing 300,688 residues as compiled by Doolittle, R.F. in Fasman, G.D. (Ed.), *Predictions of Protein Structure and the Principles of Protein Conformation*, Plenum Press (1989).

^dData from Dawson, R.M.C., Elliott, D.C., Elliott, W.H., and Jones, K.M., *Data for Biochemical Research* (3rd ed.), pp. 1–31, Oxford Science Publications (1986).

Table 4-1 (continued)

Name, Three-letter Symbol, and One-letter Symbol	Structural Formula ^a	Residue Mass (D) ^b	Average Occurrence in Proteins (%) ^c	pK_1 $\alpha ext{-COOH}^d$	pK_2 α -NH $_3^{+d}$	pK_{R} Side Chain d
Amino acids with uncharge						
Serine COO- Ser S H-C-CH ₂ NH ₃	2—ОН	87.1	6.8	2.19	9.21	
Threonine COO-	H -C*CH ₂	101.1	5.9	2.09	9.10	
T $H-C$ NH_3^+ Asparagine ^e COO^-	OH O	114.1	4.3	2.14	8.72	
Asparagine ^e COO ⁻ Asn N H-C-CH NH ⁺ NH ⁺	$_2$ - C_N $_{NH_2}$					

^eThe three- and one-letter symbols for asparagine *or* aspartic acid are Asx and B, whereas for glutamine *or* glutamic acid they are Glx and Z. The one-letter symbol for an undetermined or "nonstandard" amino acid is X.

Table 4-1 part 4 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

^fBoth neutral and protonated forms of histidine are present at pH 7.0, since its p K_R is close to 7.0.

Table 4-1 (continued)

Name Three-letter and One-lette	Symbol,	Structural Formula ^a	Residue Mass (D) ^b	Average Occurrence in Proteins (%) ^c	pK_1 $\alpha ext{-COOH}^d$	pK_2 α -NH $_3^{+d}$	$pK_{\mathbf{R}}$ Side Chain d
Amino acids	with uncharged	l polar side chains					
Glutamine ^e Gln Q	COO ⁻ H-C-CH ₂ - NH ₃ +	$-CH_2-C$ NH_2	128.1	4.3	2.17	9.13	
Tyrosine Tyr Y	COO- H-C-CH ₂ : NH ₃ ⁺		163.2	3.2	2.20	9.21	10.46 (phenol)
Cysteine Cys C	COO ⁻ H-C-CH ₂ : NH ₃ +		103.1	1.9	1.92	10.70	8.37 (sulfhydryl)

^eThe three- and one-letter symbols for asparagine *or* aspartic acid are Asx and B, whereas for glutamine *or* glutamic acid they are Glx and Z. The one-letter symbol for an undetermined or "nonstandard" amino acid is X.

Table 4-1 part 5 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

^fBoth neutral and protonated forms of histidine are present at pH 7.0, since its p K_R is close to 7.0.

Table 4-1 (continued)

Name, Three-letter Symbol, Structural and One-letter Symbol Formula ^a	Residue Mass (D) ^b	Average Occurrence in Proteins (%) ^c	pK_1 $\alpha ext{-}\mathrm{COOH}^d$	pK_2 α -NH ₃ ^{+d}	pK_{R} Side Chain d
Amino acids with charged polar side chains					
Lysine COO^- Lys $H-C-CH_2-CH_2-CH_2-NH_3^+$	128.2	5.9	2.16	9.06	10.54 (ε-NH ₃ ⁺)
Arginine COO^- R H^+_3 $H-C-CH_2-CH_2-CH_2-NH-C$ NH_2 NH_3^+ NH_2^+	156.2	5.1	1.82	8.99	12.48 (guanidino)
Histidine ^f COO ⁻ His A NH ⁺	137.1	2.3	1.80	9.33	6.04 (imidazole)
	115.1	5.3	1.99	9.90	3.90 (β-COOH)
Aspartic acide COO-O Asp H-C-CH ₂ -C NH ₃					
Glutamic acid ^e COO ⁻ O Glu E H-C-CH ₂ -CH ₂ -C NH ₃ +	129.1	6.3	2.10	9.47	4.07 (γ-COOH)

^eThe three- and one-letter symbols for asparagine *or* aspartic acid are Asx and B, whereas for glutamine *or* glutamic acid they are Glx and Z. The one-letter symbol for an undetermined or "nonstandard" amino acid is X.

^fBoth neutral and protonated forms of histidine are present at pH 7.0, since its p K_R is close to 7.0.

Amino acids in space filling model

Peptide bond

Condensation of the two amino acids Amino acid residue Amino terminus (N-terminus) Carboxyl terminus (C-terminus)

Figure 4-3 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Disulfide bonded cysteine residues

Oxidation and reduction

Acid-base properties

pI = isoelectric point pK values depend on nearby groups

Figure 4-8 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Nomenclature

Alanyltyrosylaspartylglycine

Ala-Tyr-Asp-Gly

AYDG

Unnumbered figure pg 85 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

3-letter code 1-letter code

Figure 4-9 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Stereochemistry

Optically active molecules are asymmetric

Figure 4-10 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Asymmetric carbon Asymmetric center Chiral center Chirality

Chiral centers give rise to enantiomers

Figure 4-11 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

이성질체: 분자식은 같으나 구조 (성질)가 다를 경우 이성질체 (isomer)라 부른다. 성질(물리/화학/광학)

구조이성질체 (constitutional isomer)- 원자가 다르게 연결되어 있을 때 (공유결합의 변형이 없이는 동일한 구조를 가질 수 없다) ex. n-propanol, iso-propanol

형태이성질체 (이형태체, conformational isomer, confomer)- 형태 (conformation)란 단일결합을 축으로 회전할 때 원자의 배열이 달라지는 것을 말한다.

ex. 에탄의 형태 (eclipsed, staggered)

입체이성질체 (stereoisomer: cis-trans isomer, enantiomer, diastereoisomer, epimer)- 삼차원적인 공간배향이 다른 화합물을 가리킨다.

Enantiomer: nonsuperimposable mirror image

Diastereomer: partial enantiomer

Epimer: isomer that differs at a single chiral center

Configuration & conformation

Relative configuration: D/L configuration

Absolute configuration: R/S configuration

The enantiomers of glyceraldehyde

D- and L- in amino acids do not indicate its ability to rotate the plane of polarized light

Absolute configuration: R/S configuration

Box 4-2 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Priority order

The importance of stereochemistry

Figure 4-13 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Figure 4-14 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Its enantiomer causes severe birth defects in human

Figure 4-15 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Box 4-3 figure 1 Fundamentals of Biochemistry, 2/e

Fluorophore of green fluorescent protein

Box 4-3 figure 2 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Figure 4-16 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Glutathione disulfide (GSSG)

Unnumbered figure pg 91 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons