Donald Voet • Judith G. Voet • Charlotte W. Pratt # Fundamentals of Biochemistry Second Edition **Chapter 4:** **Amino Acids** Chapter 4 Opener Fundamentals of Biochemistry, 2/e #### α-amino acids α-carbon Carboxylic acid group Amino group R group General structure Zwitterionic (dipolar) form (at physiological pH) pK_1, pK_2, pK_R Table 4-1 Key to Structure. Covalent Structures and Abbreviations of the "Standard" Amino Acids of Proteins, Their Occurrence, and the pK Values of Their Ionizable Groups | Name, Three-letter Symbol, and One-letter Symbol | Structural
Formula ^a | Residue Mass $(D)^b$ | Average
Occurrence
in Proteins (%) ^c | ${}_{ m p}K_1 \ {}_{ m lpha ext{-}COOH}^d$ | pK_2 α -NH $_3^{+d}$ | $\mathfrak{p}K_{\mathrm{R}}$ Side Chain d | |--|------------------------------------|----------------------|---|--|-------------------------------|--| | Amino acids with nonpolar | side chains | | | | | | | Glycine COO^- Gly $H-C-H$ NH_3^+ | | 57.0 | 7.2 | 2.35 | 9.78 | | | Alanine COO- Ala A H-C-CH ₃ NH ⁺ ₃ | | 71.1 | 7.8 | 2.35 | 9.87 | | | Valine Val V Val V H-C-CH NH ⁺ | Н ₃
Н ₃ | 99.1 | 6.6 | 2.29 | 9.74 | | ^aThe ionic forms shown are those predominating at pH 7.0 (except for that of histidine^f) although residue mass is given for the neutral compound. The C_{α} atoms, as well as those atoms marked with an asterisk, are chiral centers with configurations as indicated according to Fischer projection formulas (Section 4-2). The standard organic numbering system is provided for heterocycles. ^bThe residue masses are given for the neutral residues. For the molecular masses of the parent amino acids, add 18.0 D, the molecular mass of H_2O , to the residue masses. For side chain masses, subtract 56.0 D, the formula mass of a peptide group, from the residue masses. ^cCalculated from a database of nonredundant proteins containing 300,688 residues as compiled by Doolittle, R.F. in Fasman, G.D. (Ed.), *Predictions of Protein Structure and the Principles of Protein Conformation*, Plenum Press (1989). ^dData from Dawson, R.M.C., Elliott, D.C., Elliott, W.H., and Jones, K.M., *Data for Biochemical Research* (3rd ed.), pp. 1–31, Oxford Science Publications (1986). Table 4-1 Key to Structure. Covalent Structures and Abbreviations of the "Standard" Amino Acids of Proteins, Their Occurrence, and the pK Values of Their Ionizable Groups | Name
Three-letter sand One-letter | Symbol, | Structural
Formula ^a | Residue Mass $(D)^b$ | Average
Occurrence
in Proteins (%) ^c | ${}_{f \alpha}K_1$ ${}_{f lpha}$ -COOH d | pK_2 α -NH $_3^{+d}$ | pK_{R} Side Chain d | |--------------------------------------|---|---|----------------------|---|---|-------------------------------|-----------------------------------| | Amino acids Leucine Leu L | | CH ₃ | 113.2 | 9.1 | 2.33 | 9.74 | | | Isoleucine
Ile
I | COO-

H-C-

NH3 | CH ₃

C*—CH ₂ —CH ₃

H | 113.2 | 5.3 | 2.32 | 9.76 | | | Methionine
Met
M | COO ⁻
H-C <mark>-CH₂

NH₃⁺</mark> | CH ₂ -S-CH ₃ | 131.2 | 2.2 | 2.13 | 9.28 | | ^aThe ionic forms shown are those predominating at pH 7.0 (except for that of histidine^f) although residue mass is given for the neutral compound. The C_{α} atoms, as well as those atoms marked with an asterisk, are chiral centers with configurations as indicated according to Fischer projection formulas (Section 4-2). The standard organic numbering system is provided for heterocycles. ^bThe residue masses are given for the neutral residues. For the molecular masses of the parent amino acids, add 18.0 D, the molecular mass of H₂O, to the residue masses. For side chain masses, subtract 56.0 D, the formula mass of a peptide group, from the residue masses. ^cCalculated from a database of nonredundant proteins containing 300,688 residues as compiled by Doolittle, R.F. in Fasman, G.D. (Ed.), *Predictions of Protein Structure and the Principles of Protein Conformation*, Plenum Press (1989). ^dData from Dawson, R.M.C., Elliott, D.C., Elliott, W.H., and Jones, K.M., *Data for Biochemical Research* (3rd ed.), pp. 1–31, Oxford Science Publications (1986). Table 4-1 Key to Structure. Covalent Structures and Abbreviations of the "Standard" Amino Acids of Proteins, Their Occurrence, and the pK Values of Their Ionizable Groups | Name, Three-letter Symbol and One-letter Symbol | | Residue Mass $(D)^b$ | Average
Occurrence
in Proteins (%) ^c | pK_1 $\alpha ext{-COOH}^d$ | pK_2 α -NH $_3^{+d}$ | p $K_{ m R}$
Side Chain ^d | | |---|--|----------------------|---|------------------------------|-------------------------------|---|--| | Amino acids with nonpolar side chains | | | | | | | | | Proline Pro COOT P | H ₂ -C -A -C -A -A -C -A | 97.1 | 5.2 | 1.95 | 10.64 | | | | Phe H-C | $COO^ C-CH_2$ $OOO^ OOO^ OOO$ | 147.2 | 3.9 | 2.20 | 9.31 | | | | Trp
W H-C | COO-
C-CH ₂ 3
IH ₃ 2
N
H | 186.2 | 1.4 | 2.46 | 9.41 | | | ^aThe ionic forms shown are those predominating at pH 7.0 (except for that of histidine^f) although residue mass is given for the neutral compound. The C_{α} atoms, as well as those atoms marked with an asterisk, are chiral centers with configurations as indicated according to Fischer projection formulas (Section 4-2). The standard organic numbering system is provided for heterocycles. $^{^{}b}$ The residue masses are given for the neutral residues. For the molecular masses of the parent amino acids, add 18.0 D, the molecular mass of $H_{2}O$, to the residue masses. For side chain masses, subtract 56.0 D, the formula mass of a peptide group, from the residue masses. ^cCalculated from a database of nonredundant proteins containing 300,688 residues as compiled by Doolittle, R.F. in Fasman, G.D. (Ed.), *Predictions of Protein Structure and the Principles of Protein Conformation*, Plenum Press (1989). ^dData from Dawson, R.M.C., Elliott, D.C., Elliott, W.H., and Jones, K.M., *Data for Biochemical Research* (3rd ed.), pp. 1–31, Oxford Science Publications (1986). Table 4-1 (continued) | Name,
Three-letter Symbol,
and One-letter Symbol | Structural
Formula ^a | Residue
Mass
(D) ^b | Average
Occurrence
in Proteins (%) ^c | pK_1 $\alpha ext{-COOH}^d$ | pK_2 α -NH $_3^{+d}$ | pK_{R} Side Chain d | |---|------------------------------------|-------------------------------------|---|------------------------------|-------------------------------|--------------------------| | Amino acids with uncharge | | | | | | | | Serine COO- Ser S H-C-CH ₂ NH ₃ | 2—ОН | 87.1 | 6.8 | 2.19 | 9.21 | | | Threonine COO- | H

-C*CH ₂ | 101.1 | 5.9 | 2.09 | 9.10 | | | T $H-C$ NH_3^+ Asparagine ^e COO^- | OH O | 114.1 | 4.3 | 2.14 | 8.72 | | | Asparagine ^e COO ⁻ Asn N H-C-CH NH ⁺ NH ⁺ | $_2$ - C_N $_{NH_2}$ | | | | | | ^eThe three- and one-letter symbols for asparagine *or* aspartic acid are Asx and B, whereas for glutamine *or* glutamic acid they are Glx and Z. The one-letter symbol for an undetermined or "nonstandard" amino acid is X. Table 4-1 part 4 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons ^fBoth neutral and protonated forms of histidine are present at pH 7.0, since its p K_R is close to 7.0. Table 4-1 (continued) | Name
Three-letter
and One-lette | Symbol, | Structural
Formula ^a | Residue
Mass
(D) ^b | Average
Occurrence
in Proteins (%) ^c | pK_1 $\alpha ext{-COOH}^d$ | pK_2 α -NH $_3^{+d}$ | $pK_{\mathbf{R}}$ Side Chain d | |---------------------------------------|--|------------------------------------|-------------------------------------|---|------------------------------|-------------------------------|-----------------------------------| | Amino acids | with uncharged | l polar side chains | | | | | | | Glutamine ^e
Gln
Q | COO ⁻

H-C-CH ₂ -

NH ₃ + | $-CH_2-C$ NH_2 | 128.1 | 4.3 | 2.17 | 9.13 | | | Tyrosine
Tyr
Y | COO-
H-C-CH ₂ :
NH ₃ ⁺ | | 163.2 | 3.2 | 2.20 | 9.21 | 10.46 (phenol) | | Cysteine
Cys
C | COO ⁻

H-C-CH ₂ :

NH ₃ + | | 103.1 | 1.9 | 1.92 | 10.70 | 8.37 (sulfhydryl) | ^eThe three- and one-letter symbols for asparagine *or* aspartic acid are Asx and B, whereas for glutamine *or* glutamic acid they are Glx and Z. The one-letter symbol for an undetermined or "nonstandard" amino acid is X. Table 4-1 part 5 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons ^fBoth neutral and protonated forms of histidine are present at pH 7.0, since its p K_R is close to 7.0. Table 4-1 (continued) | Name, Three-letter Symbol, Structural and One-letter Symbol Formula ^a | Residue
Mass
(D) ^b | Average
Occurrence
in Proteins (%) ^c | pK_1 $\alpha ext{-}\mathrm{COOH}^d$ | pK_2 α -NH ₃ ^{+d} | pK_{R} Side Chain d | |---|-------------------------------------|---|---------------------------------------|--|---| | Amino acids with charged polar side chains | | | | | | | Lysine COO^- Lys $H-C-CH_2-CH_2-CH_2-NH_3^+$ | 128.2 | 5.9 | 2.16 | 9.06 | 10.54 (ε-NH ₃ ⁺) | | Arginine COO^- R H^+_3 $H-C-CH_2-CH_2-CH_2-NH-C$ NH_2 NH_3^+ NH_2^+ | 156.2 | 5.1 | 1.82 | 8.99 | 12.48 (guanidino) | | Histidine ^f COO ⁻ His A NH ⁺ | 137.1 | 2.3 | 1.80 | 9.33 | 6.04 (imidazole) | | | 115.1 | 5.3 | 1.99 | 9.90 | 3.90 (β-COOH) | | Aspartic acide COO-O
Asp H-C-CH ₂ -C NH ₃ | | | | | | | Glutamic acid ^e COO ⁻ O Glu E H-C-CH ₂ -CH ₂ -C NH ₃ + | 129.1 | 6.3 | 2.10 | 9.47 | 4.07 (γ-COOH) | ^eThe three- and one-letter symbols for asparagine *or* aspartic acid are Asx and B, whereas for glutamine *or* glutamic acid they are Glx and Z. The one-letter symbol for an undetermined or "nonstandard" amino acid is X. ^fBoth neutral and protonated forms of histidine are present at pH 7.0, since its p K_R is close to 7.0. ## Amino acids in space filling model ## Peptide bond Condensation of the two amino acids Amino acid residue Amino terminus (N-terminus) Carboxyl terminus (C-terminus) Figure 4-3 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons ### Disulfide bonded cysteine residues #### Oxidation and reduction ### Acid-base properties pI = isoelectric point pK values depend on nearby groups Figure 4-8 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons #### **Nomenclature** Alanyltyrosylaspartylglycine Ala-Tyr-Asp-Gly **AYDG** Unnumbered figure pg 85 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons 3-letter code 1-letter code Figure 4-9 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons #### Stereochemistry Optically active molecules are asymmetric Figure 4-10 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons Asymmetric carbon Asymmetric center Chiral center Chirality Chiral centers give rise to enantiomers Figure 4-11 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons 이성질체: 분자식은 같으나 구조 (성질)가 다를 경우 이성질체 (isomer)라 부른다. 성질(물리/화학/광학) 구조이성질체 (constitutional isomer)- 원자가 다르게 연결되어 있을 때 (공유결합의 변형이 없이는 동일한 구조를 가질 수 없다) ex. n-propanol, iso-propanol 형태이성질체 (이형태체, conformational isomer, confomer)- 형태 (conformation)란 단일결합을 축으로 회전할 때 원자의 배열이 달라지는 것을 말한다. ex. 에탄의 형태 (eclipsed, staggered) 입체이성질체 (stereoisomer: cis-trans isomer, enantiomer, diastereoisomer, epimer)- 삼차원적인 공간배향이 다른 화합물을 가리킨다. Enantiomer: nonsuperimposable mirror image Diastereomer: partial enantiomer Epimer: isomer that differs at a single chiral center Configuration & conformation Relative configuration: D/L configuration Absolute configuration: R/S configuration #### The enantiomers of glyceraldehyde D- and L- in amino acids do not indicate its ability to rotate the plane of polarized light ## Absolute configuration: R/S configuration Box 4-2 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons Priority order ## The importance of stereochemistry Figure 4-13 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons Figure 4-14 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons Its enantiomer causes severe birth defects in human Figure 4-15 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons Box 4-3 figure 1 Fundamentals of Biochemistry, 2/e #### Fluorophore of green fluorescent protein Box 4-3 figure 2 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons Figure 4-16 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons #### Glutathione disulfide (GSSG) Unnumbered figure pg 91 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons