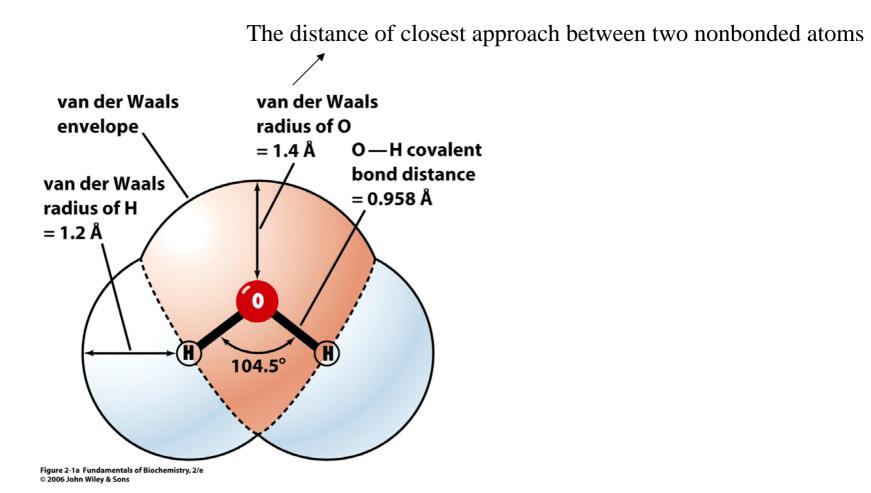
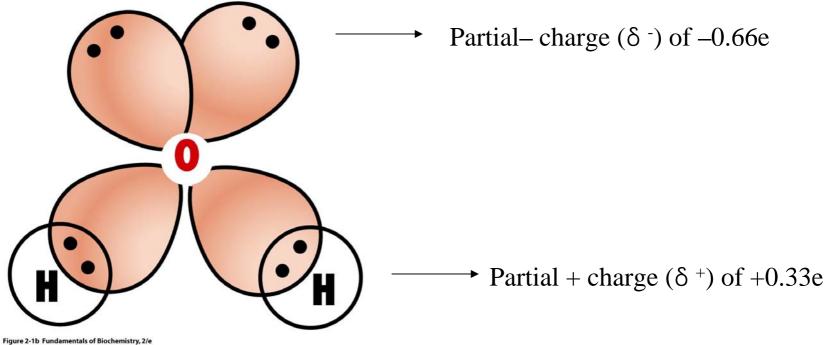
Chapter 2: Water

Physical properties of water Chemical properties of water

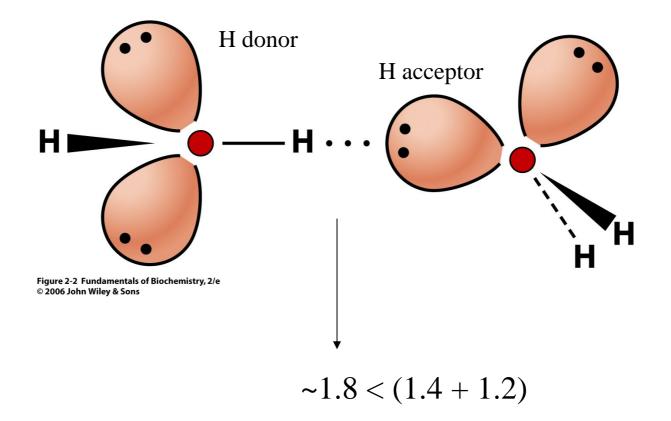

Chapter 2 Opener Fundamentals of Biochemistry, 2/e

Water: excellent solvent for polar molecules


Polarity H bond capability

Physical properties of water

Structure of water: non linear structure



Tetrahedral sp^3 orbitals of the oxygen atoms water is polar (dipole)

© 2006 John Wiley & Sons

Directional intermolecular association: H bond

The structure of ice: six membered ring each molecule interacts with four other molecules (maximum possible interaction)

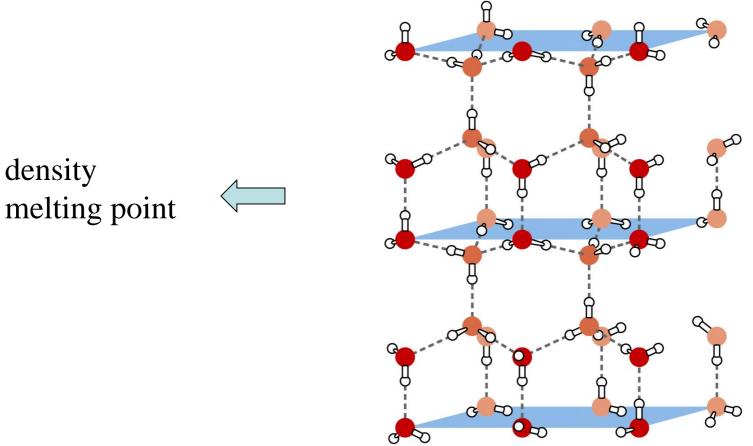


Figure 2-3 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

The structure of liquid water is irregular reorientation of each molecule: ~1/10⁻¹² sec

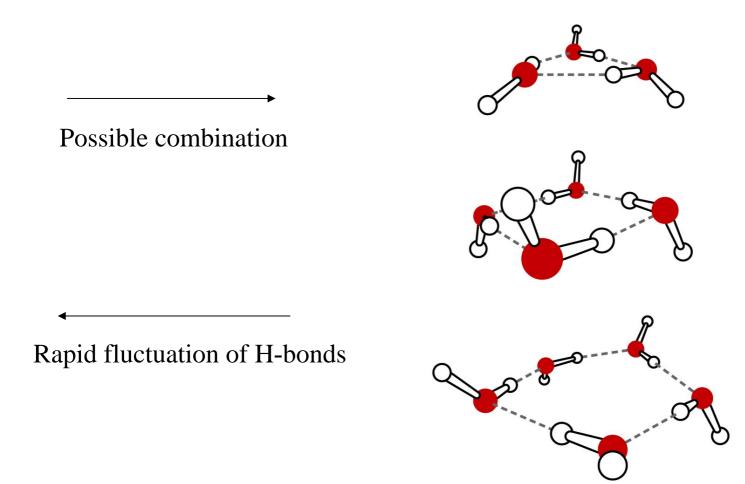


Figure 2-4 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

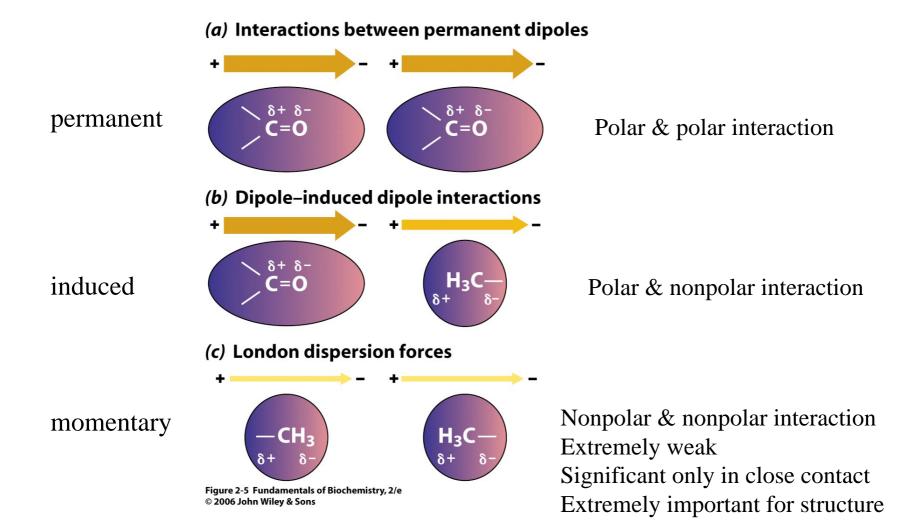

Type of Bond	Example	Bond Strength $(kJ \cdot mol^{-1})$
Covalent	О—Н	460
	С—Н	414
	С—С	348
Noncovalent		
Ionic interaction	$-COO^{-}\cdots^{+}H_{3}N-$	86
van der Waals forces		
Hydrogen bond	-0-H···0	20
Dipole-dipole interaction		9.3
	н н I I	
London dispersion forces	$-\dot{C}$ $-H\cdots H$ $-\dot{C}$ $-$	0.3
	H H	

Table 2-1 Bond Energies in Biomolecules

Table 2-1 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

> Ionic (fully charged): NaCl Nonionic: covalent (most organic molecules) polar (partially charged): oxygen nonpolar: carbon

Dipole-dipole interactions

Water as a solvent hydrophilic hydrophobic

(hydrated = solvated)

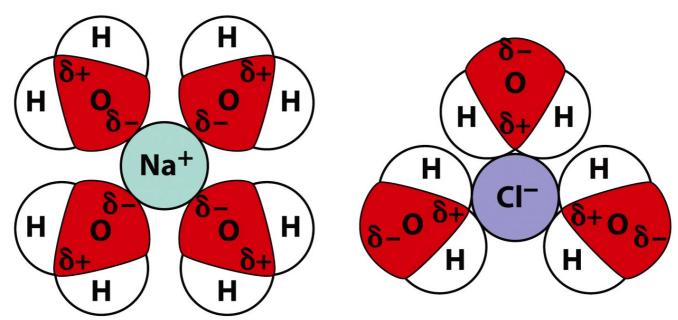
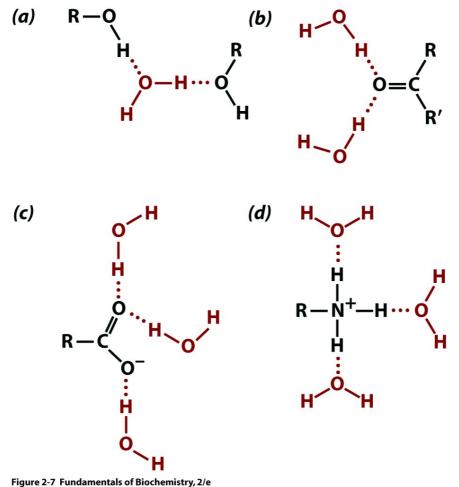



Figure 2-6 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

H bonding by functional groups

functional groups as H donor or H acceptor most biomolecules contain functional groups

© 2006 John Wiley & Sons

The hydrophobic effect

the tendency of water to minimize its contacts with hydrophobic molecules

Table 2-2 Thermodynamic Changes for Transferring Hydrocarbons from Water to Nonpolar Solvents at 25°C				
Process	$\frac{\Delta H}{(\mathrm{kJ}\cdot\mathrm{mol}^{-1})}$	$\frac{-T\Delta S}{(\text{kJ}\cdot\text{mol}^{-1})}$	$\Delta G \ (\mathrm{kJ}\cdot\mathrm{mol}^{-1})$	
$\begin{array}{c} \operatorname{CH}_4 \text{ in } \operatorname{H}_2 O \Longrightarrow \operatorname{CH}_4 \text{ in } \operatorname{C}_6 \operatorname{H}_6 \\ \operatorname{CH}_4 \text{ in } \operatorname{H}_2 O \Longrightarrow \operatorname{CH}_4 \text{ in } \operatorname{CCl}_4 \\ \operatorname{C}_2 \operatorname{H}_6 \text{ in } \operatorname{H}_2 O \Longrightarrow \operatorname{C}_2 \operatorname{H}_6 \text{ in benzene} \\ \operatorname{C}_2 \operatorname{H}_4 \text{ in } \operatorname{H}_2 O \Longrightarrow \operatorname{C}_2 \operatorname{H}_4 \text{ in benzene} \\ \operatorname{C}_2 \operatorname{H}_2 \text{ in } \operatorname{H}_2 O \Longrightarrow \operatorname{C}_2 \operatorname{H}_2 \text{ in benzene} \\ \end{array}$ Benzene in $\operatorname{H}_2 O \Longrightarrow \operatorname{liquid benzene}^a \\ \operatorname{Toluene in } \operatorname{H}_2 O \Longrightarrow \operatorname{liquid toluene}^a \end{array}$	11.7 10.5 9.2 6.7 0.8 0.0 0.0	$ \begin{array}{r} -22.6 \\ -22.6 \\ -25.1 \\ -18.8 \\ -8.8 \\ -17.2 \\ -20.0 \\ \end{array} $	$ \begin{array}{r} -10.9 \\ -12.1 \\ -15.9 \\ -12.1 \\ -8.0 \\ -17.2 \\ -20.0 \\ \end{array} $	
Data measured at 18°C. Source: Kauzmann, W., Adv. Protein Chem. 14, 39 (1959).			

Table 2-2 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Entropically driven

Orientation of water molecules around a nonpolar solute

maximizing H bonds capacity H bond network around the molecule increase of order in water molecules

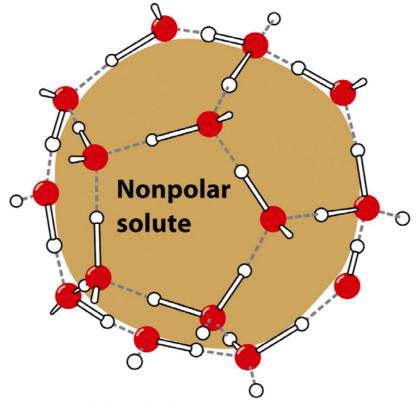
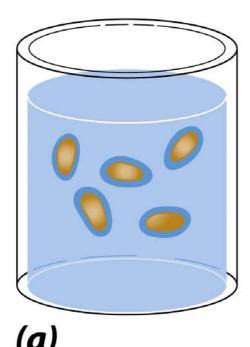



Figure 2-8 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Aggregation of nonpolar molecules in water

Hydrophobic molecules are not dispersed (not solvated) Entropy is increased

(decrease in the molecule but increase in water)

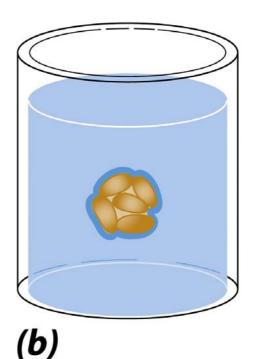


Figure 2-9 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons Amphiphiles form micelles and bilayers

Figure 2-10 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

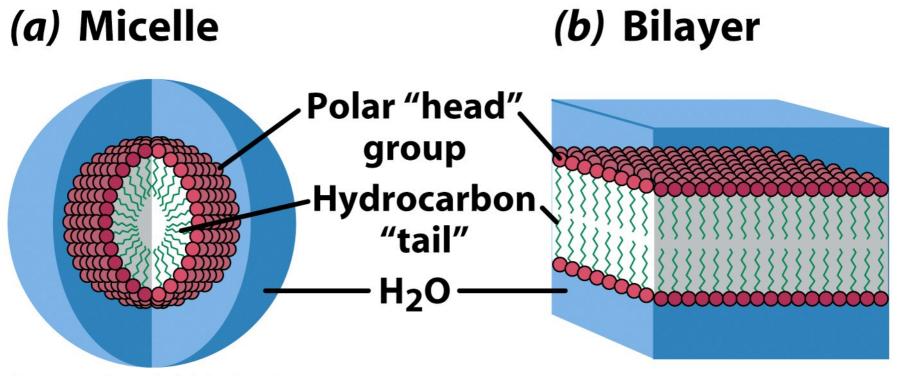


Figure 2-11 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Osmosis

movement of a solution to a lower conc prevent the inward flow → osmotic pressure implications of osmotic pressure for living organisms animal, plant, bacteria, etc

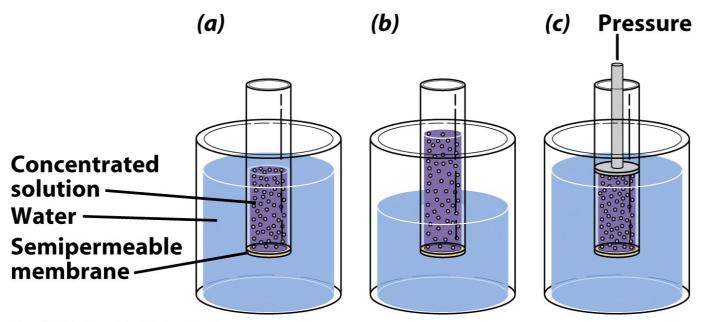
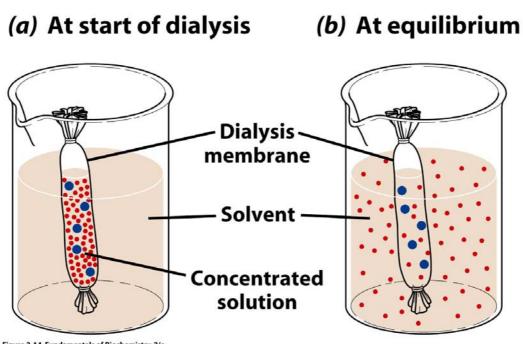
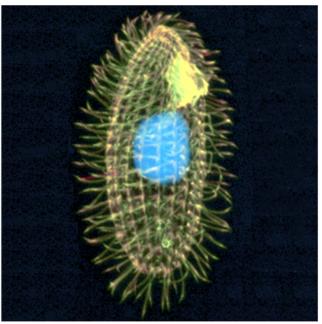


Figure 2-13 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Diffusion

random movement of molecules to a lower conc. diffusion rate is proportional to $1/d^2$ (diffusion in all directions)




Figure 2-14 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Diffusion determines the cell suze

diffusion is important for transportation of molecules surface to volume ratio: should be high or low? the larger the less surface area

limit in cell size monocellular & multicellular

tetrahymena

Unnumbered Figure pg 31 Fundamentals of Biochemistry, 2/e

Chemical properties of water

Ionization of water $H_2O \rightleftharpoons H^+ + OH^-$

Figure 2-15 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons Dissociation constant of water

```
\begin{split} & K = [H^+][OH^-]/[H_2O] \\ & [H^+][OH^-] = [H_2O] \ K = Kw = 10^{-14} \end{split}
```

 $pH = -log [H^+] = log (1/[H^+])$

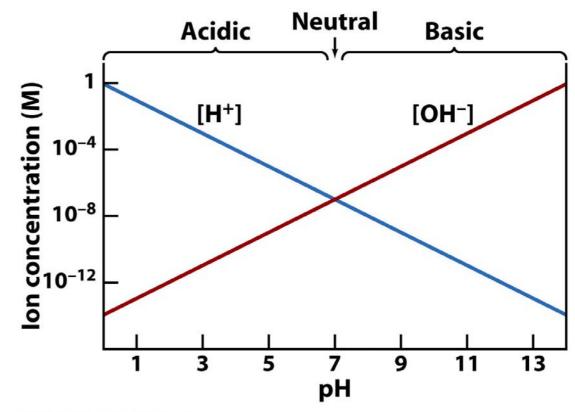


Figure 2-16 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Table 2-3 pH Values of Some Common Substances

Substance	pН
1 M NaOH	14
Household ammonia	12
Seawater	8
Blood	7.4
Milk	7
Saliva	6.6
Tomato juice	4.4
Vinegar	3
Gastric juice	1.5
1 M HCl	0

Table 2-3 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Acid-base chemistry

An acid can donate a proton and a base can accept a proton

HA + H₂O \rightleftharpoons H₃O⁺ (conjugate acid) + A⁻ (conjugate base) HA \rightleftharpoons H⁺ + A⁻ (acid reaction) HB⁺ \rightleftharpoons H⁺ + B⁻ (base reaction)

Dissociation of acid

 $K = [H_{3}O^{+}][A^{-}]/[HA][H_{2}O]$ $K [H_{2}O] = Ka = [H^{+}][A^{-}]/[HA]$ $[H^{+}] = K ([HA]/[A^{-}])$ $-\log [H^{+}] = -\log K - \log ([HA]/[A^{-}])$ $pK = -\log K$ $pH = pK + \log ([A^{-}]/[HA]) : \text{Henderson-Hasselbalch equation}$

It is useful for calculating pH changes of weak acid or base not for strong acid or base

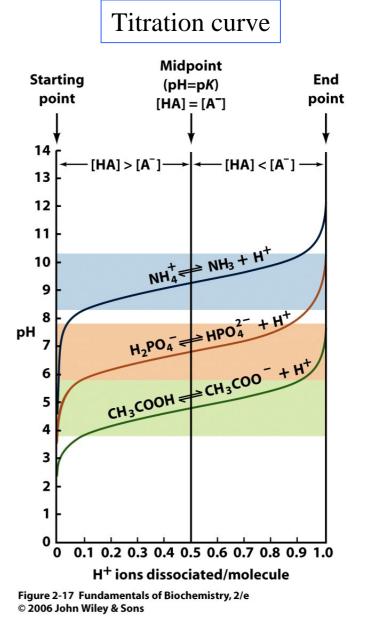

Acid	Κ	p <i>K</i>
Oxalic acid	5.37×10^{-2}	1.27 (p <i>K</i> ₁)
H_3PO_4	7.08×10^{-3}	2.15 (pK_1)
Formic acid	1.78×10^{-4}	3.75
Succinic acid	6.17×10^{-5}	4.21 (p K_1)
Oxalate ⁻	5.37×10^{-5}	4.27 (p <i>K</i> ₂)
Acetic acid	1.74×10^{-5}	4.76
Succinate ⁻	2.29×10^{-6}	5.64 (p K_2)
2-(<i>N</i> -Morpholino)ethanesulfonic acid (MES)	8.13×10^{-7}	6.09
H_2CO_3	4.47×10^{-7}	6.35 $(pK_1)^a$
Piperazine- <i>N</i> , <i>N</i> '-bis(2-ethanesulfonic acid) (PIPES)	1.74×10^{-7}	6.76
$H_2PO_4^-$	1.51×10^{-7}	$6.82 (pK_2)$
3-(<i>N</i> -Morpholino)propanesulfonic acid (MOPS)	7.08×10^{-8}	7.15
<i>N</i> -2-Hydroxyethylpiperazine- <i>N</i> '-2-ethanesulfonic acid (HEPES)	3.39×10^{-8}	7.47
Tris(hydroxymethyl)aminomethane (Tris)	8.32×10^{-9}	8.08
NH_4^+	5.62×10^{-10}	9.25
Glycine (amino group)	1.66×10^{-10}	9.78
HCO_3^-	4.68×10^{-11}	10.33 (p <i>K</i> ₂)
Piperidine	7.58×10^{-12}	11.12
HPO_4^{2-}	4.17×10^{-13}	12.38 (p <i>K</i> ₃)

 Table 2-4
 Dissociation Constants and pK Values at 25°C of Some Acids

Source: Dawson, R.M.C., Elliott, D.C., Elliott, W.H., and Jones, K.M., *Data for Biochemical Research* (3rd ed.), pp. 424–425, Oxford Science Publications (1986); and Good, N.E., Winget, G.D., Winter, W., Connolly, T.N., Izawa, S., and Singh, R.M.M., *Biochemistry* 5, 467 (1966). ^{*a*}The pK for the overall reaction $CO_2 + H_2O \Longrightarrow H_2CO_3 \Longrightarrow H^+ + HCO_3^-$; see Box 2-2. Table 2-4 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons $HA \rightleftharpoons H^+ + A^-$

At initial stage $K = [H^+][A^-]/[HA]$ $= [H^+]^2/[HA]$ $K[HA] = [H^+]^2$ pH = (pK + p[HA])/2

During titration with acid or base $pH = pK + \log ([A^-]/[HA])$

0.1M acetic acid 500 ml을 0.1 M KOH로 적정할 때의 적정곡선은 다음과 같은 계산을 통해 얻어진 곡선과 일치한다. 초산의 Ka 값은 10⁻⁵ (pKa= 5)

- 1. at the start: 아무것도 첨가하지 않았을 때 (이온화된 것들이 너무 적으므로 무시) Ka = [H⁺][A]/[HA] = [H⁺]²/[HA] pH = (pKa + p[HA])/2 = (5+1)/2 = 3
- 2. at any point: H-H 식 사용 0.1 M KOH 100 ml 첨가하였을 때 HA ↔ H⁺ + A⁻ 0.1 x 0.5 -0.1 x 0.1 0.1 x 0.1

```
pH = 5 + log([A^-]/[HA]) = 5 + log(0.01/0.04) = 4.4
```

```
0.1 M KOH 250 ml 첨가하였을 때
pH = 5 + log([A<sup>-</sup>]/[HA]) = 5 + log(0.025/0.025) = 5
```

```
0.1 M KOH 350 ml 첨가하였을 때
pH = 5 + log([A<sup>-</sup>]/[HA]) = 5 + log(0.0350/0.0150) = 5.48
```

```
3. at the end point: 0.1 M KOH 500 ml 첨가하였을 때
이론적으로 pH = 7, 그러나 A<sup>-</sup> + HOH ↔ HA + OH<sup>-</sup>
Kb로 계산하면 Kb = 10<sup>-14</sup> -Ka = 10<sup>-9</sup> = [HA][OH<sup>-</sup>]/[A<sup>-</sup>] = [OH<sup>-</sup>]<sup>2</sup>/[A<sup>-</sup>]
그러므로 pOH = (pKb + log(1/[A<sup>-</sup>]))/2
= (9+ log(1/0.05))/2 = 5.15
그러므로 pH = 8.85
```

Buffer Buffering range Buffering capacity

Polyprotic acid

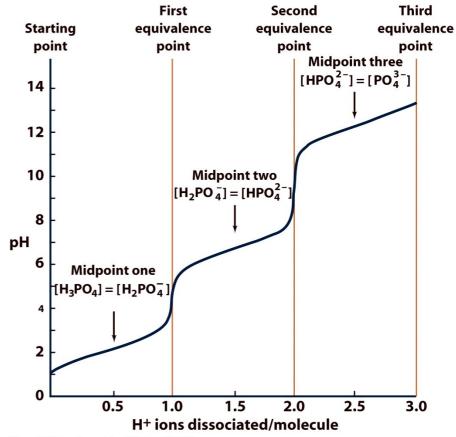


Figure 2-18 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons