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Engineering pluripotency through nuclear reprogramming and directing stem cells into defined lineages underscores
cell fate plasticity. Acquisition of and departure from stemness are governed by genetic and epigenetic controllers, with
modulation of energy metabolism and associated signaling increasingly implicated in cell identity determination.
Transition from oxidative metabolism, typical of somatic tissues, into glycolysis is a prerequisite to fuel-proficient
reprogramming, directing a differentiated cytotype back to the pluripotent state. The glycolytic metabotype supports
the anabolic and catabolic requirements of pluripotent cell homeostasis. Conversely, redirection of pluripotency into
defined lineages requires mitochondrial biogenesis and maturation of efficient oxidative energy generation and
distribution networks to match demands. The vital function of bioenergetics in regulating stemness and lineage
specification implicates a broader role for metabolic reprogramming in cell fate decisions and determinations of
tissue regenerative potential.
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Regenerative medicine is poised to transform med-
ical practice by providing the prospect of definitive
solutions for patients with degenerative diseases, for
which curative therapies are currently lacking.!?
With aging of the global population, chronic non-
communicable diseases—led by the surge in car-
diovascular disorders—are a recognized emerging
pandemic.** Expanding the reach of current state-
of-the-art therapies, stem cell-based reconstruc-
tive strategies aim at repairing disease pathobiol-
ogy and restoring organ function. Through cell en-
graftment, growth and lineage specification, and/or
recruitment of innate repair mechanisms, regener-
ative medicine is primed to advance care beyond
palliation for a range of diseases, including cardio-
vascular conditions.”® To date, clinical experience
relies on the use of adult stem cells, which re-
side in natural body compartments, including the
blood, adipose tissue, and bone marrow, but are re-
stricted in their capacity for spontaneous lineage
specification.” Beyond use of stem cells in their
native state, recent evidence indicates that lineage
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prespecification offers enhanced therapeutic ben-
efit3? A case in point is cardiopoiesis, whereby
guided specification of the stem cell-source has been
demonstrated as advantageous in the setting of heart
failure therapy.'®!! In this context, deconvolution
of cellular fate plasticity is a key strategy for ad-
vancing the applications of cell-based regenerative
medicine.!?14

Cell fate redirection

Remarkably, stem cells are not the sole regener-
ative source. Indeed, redirection of somatic dif-
ferentiated cells back to the pluripotent state and
transdifferentiation into alternative specialized lin-
eages has recently been reported.'>'” Why a spe-
cialized cell would maintain the potential to reac-
tivate gene programs typical of another cell type
is unknown. Yet, the uncovered cellular plasticity
would endow the body with an innate repair ca-
pacity, with important implications for regenera-
tive medicine applications. Cell fate redirection is
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achieved by perturbing the expression of specific
combinations of transcriptional regulators that are
naturally dormant in differentiated populations. In
this way, nuclear reprogramming by overexpression
of primordial transcription factor cocktails is suffi-
cient to reset the gene expression pattern and so-
matic epigenetic landscape to an embryonic-like
state.'®20 Such induced pluripotent stem (iPS) cells
recapitulate many of the features of natural inner
cell mass—derived embryonic stem cells (ESCs), in-
cluding their ability to give rise to tissues of all lin-
eages, which defines genuine pluripotency.?'~° The
broad applications of iPS cells range from diagnostic
platforms to unravel individual variation in disease
susceptibility to personalized biotherapeutics offer-
ing next generation tools for functional regenera-
tion.>!+3

Metabolism in cell fate decisions

Beyond manipulation of the genetic and epige-
netic state, modulation of energy metabolism and
metabolic signaling has been implicated in cell
fate decisions.”> Examination of cellular bioen-
ergetics documents that modulation of mitochon-
drial infrastructure and metabolic pathways is
vital for crosstalk with genetic programs ensuring
direction of cell fate.’>*® With emphasis on ded-
ifferentiation of somatic cells back to the pluripo-
tent ground state and subsequent redifferentiation
into specific lineages, this cytotype interconver-
sion implicates mitochondrial dynamics and energy
metabolism as a rheostat-controlling cell identity

(Fig. 1).
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Metabolic control of dedifferentiation

Metamorphosis of metabolic infrastructure
Dedifferentiation of somatic cells back to the
pluripotent ground state requires dramatic remod-
eling of the metabolic infrastructure to support the
anabolic and catabolic requirements of pluripo-
tent cells. Nuclear reprogramming induces a re-
duction in mitochondrial DNA (mtDNA), which
results in diminished mitochondrial density com-
pared to the parental somatic source, and similar
to that observed in ESCs, the quintessential stem-
ness archetype.’’~*¢ Mitochondrial localization also
transitions during nuclear reprogramming from ex-
tensive cytoplasmic networks to a predominately
embryonic perinuclear localization,?”:3%:41:43:47-51
The perinuclear mitochondrial localization has been
proposed to be a marker of stemness, as it is also ob-
served in human hematopoietic and mesenchymal
stem cells.’>> Remaining mitochondria undergo
structural regression from mature mitochondria of
somatic cells, characterized by branched and elon-
gated structures with extensive intracellular mem-
branes (cristae), to the predominantly spherical and
cristae poor structures of iP$S cells,?7:3%:41-43
Transcriptional profiling has revealed a signifi-
cant remodeling of genes contributing to mitochon-
drial function and energy metabolism, with the
upregulation of mitochondrial biogenesis genes
during reprogramming, while expression of nuclear
encoded mitochondrial genes remains constant.’”->
A significant reconfiguration of glucose metabolism
also occurs, with the upregulation of the initial and
final steps of glycolysis and the nonoxidative branch
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Figure 1. Energy metabolism plasticity regulates the balance between stem cell pluripotency and lineage specification. Somatic
lineages efficiently generate ATP through complete oxidation of substrates in the mitochondria. In contrast, stem cells use glycolysis
and the pentose phosphate pathway (PPP) to meet the anabolic and catabolic demands of stemness. The balance between glycolysis
and oxidative metabolism contributes to the determination of cell fate, with nuclear reprogramming-induced mitochondrial
regression and a greater reliance on glycolysis, while lineage specification results in mitochondrial biogenesis and the maturation

of oxidative metabolism.
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of the pentose phosphate pathway and downregula-
tion of the intermediate reactions of glycolysis (GPI,
PFK, and ALDO).*-> Bisulfite sequencing iden-
tified a large number of nuclear reprogramming—
induced epigenetic modification of genes involved
in glycolysis and oxidative metabolism.*® In somatic
cells undergoing reprogramming, upregulation of
glycolytic genes precedes expression of pluripotent
markers, suggesting a requirement for a metabolic
switch in fueling reprogramming processes.*” Tran-
scriptional remodeling translates into a predomi-
nant downregulation of the subunits of the electron
transport chain and upregulation of glycolytic en-
zymes in iPS cells, similar to that observed in ESCs.*
Specifically, the isoform switch from hexokinase I to
IT and the upregulation of pyruvate dehydrogenase
kinase—critical components at the mitochondrial—
glycolysis interface—contribute significantly to in-
duction of pluripotency, as inhibition of either of
these targets reduces reprogramming efficiency.***3
Remodeling of the metabolic infrastructure is thus
an essential and consistent attribute of nuclear re-
programming and supports the bioenergetic transi-
tion during pluripotent induction.

Metabolic switch defines pluripotency

Somatic cells completely oxidize metabolic sub-
strates in the mitochondria to meet the ener-
getic demands of cellular homeostasis. Nuclear
reprogramming—induced regression of mitochon-
drial morphology would therefore suggest a signifi-
cant impact on mitochondrial function. Pluripotent
cells have elevated mitochondrial membrane po-
tential compared to their parental somatic source,
maintaining these cells in an energetically nascent,
yet responsive state poised to meet the demands
imposed by redifferentiation.’®**>” Direct assess-
ment of mitochondrial oxidative competence indi-
cates that pluripotent cells have reduced basal oxy-
gen consumption and limited reserve capacity.®**
Although iPS cells have reduced energy turnover
and total cellular adenosine triphosphate (ATP)
levels compared to their parental sources,’”+3%42:43
the reduced oxidative capacity would require the
use of alternative ATP-generating pathways to meet
bioenergetic demands of self-renewal and prolifer-
ation. In this regard, recent metabolomics studies
have indicated a bioenergetic switch from somatic
oxidative metabolism to glycolysis during nuclear
reprogramming (Fig. 1).*°° iPS cells have a
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metabolome resembling that of ESCs but sig-
nificantly different than parental cells, consistent
with the upregulation of glycolysis, including ele-
vated use of glucose and accumulation of lactate,
and the downregulation of metabolites involved
in tricarboxylic acid cycle and cellular respi-
ration.’’-39:43:53:56 This observation is consistent
across species and cell lines, indicating that the
metabolic transition is a required marker of nuclear
reprogramming success.?’-3-40:43:35

Although the metabolome of iPS and ESCs are
convergent, they are not necessarily identical, with
iPS cells demonstrating lower abundance of unsat-
urated fatty acids and higher abundance of metabo-
lites in the S-adenosyl methionine cycle.”® High lev-
els of unsaturated metabolites commonly found in
ESCs are important for suppression of oxidative
metabolism and maintenance of the pluripotent
state, while S-adenosyl methionine is a key sub-
strate for transmethylation reactions.’®>® Indeed,
supplementation with metabolites from either of
these pathways significantly reduces nuclear repro-
gramming efficiency.”® It remains unknown if other
metabolic pathways that help to maintain pluripo-
tency in ESCs, such as threonine metabolism and
purine biosynthesis,”® would significantly alter the
efficiency of nuclear reprogramming.

Targeting energy metabolism for stemness
induction

Energy metabolism is a novel target that can
be manipulated to regulate the efficiency of nu-
clear reprogramming. Hypoxic stimulation of gly-
colytic flux improves the maintenance of stem
cell pluripotency®®® and augments reprogram-
ming efficiency.%* Alternatively, inhibition of the p53
pathway, which in part stimulates glycolysis, also
potentiates reprogramming.®>’" Direct pharma-
cological modulation of energy metabolism or
supplementation with glycolytic intermediates,
accelerates glycolysis to augment reprogram-
ming efficiency.’*”! As proof of principle, agents
that inhibit glycolysis and/or stimulate oxidative
metabolism significantly suppress reprogramming
efficiency.””’! The significance of optimizing en-
ergy metabolism during nuclear reprogramming is
evidenced by the ability to reprogram cells with only
a single stemness factor, OCT4, when glycolysis is
stimulated in the presence of histone deacetylase,
TGFB, and MAPK/ERK inhibitors.”! Therefore,
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a thorough understanding of the bioenergetic re-
quirements of nuclear reprogramming, will allow
for optimization of energy metabolism to promote
pluripotency induction.

The glycolytic state in pluripotent cells may be
required to fuel both catabolic and anabolic re-
quirements.’>’? Under the abundant supply of
metabolic substrates in normal cell culture condi-
tions, pluripotent cells may benefit from a faster
rate of ATP generation from glycolysis, without be-
ing limited by the pathway’s inefficient ATP gen-
eration.’37% Glycolysis in conjunction with the
pentose phosphate pathway also provides a source of
biosynthetic substrates and reducing cofactors that
could match the anabolic requirements of cell prolif-
eration. As the environment and complete oxidation
of metabolic substrates cannot meet the demand for
these cellular constituents, the glycolytic network
can provide a capacity for generation and distri-
bution of ATP and anabolic precursors to support
cell proliferation and cellular homeostasis.>*3%47:72
Anaerobicizing of somatic oxidative metabolism
into pluripotent glycolysis thus fuels nuclear repro-
gramming and allows pluripotent cells to meet both
anabolic and catabolic requirements.

Metabolic control of redifferentiation

Oxidative metabolism maturation fuels lineage
specification

Remodeling of the mitochondrial and metabolic
infrastructure matches the evolving bioenergetic
requirements, as cells with a high energetic demand,
such as the cardiomyocyte, drive the requirement
for efficient oxidative ATP generation.’>*”%” Spon-
taneous differentiation of stem cells is initiated by
downregulation of pluripotent genes and the stim-
ulation of mtDNA replication, which ultimately
results in elevated mtDNA copy number to support
mitochondrial ~biogenesis.?”#246:30:51.57.74  Con-
comitant to the increasing density of mitochondria
is a maturation of their ultrastructure and lo-
calization to form networks of elongated and

cristae-rich ~ structures to  allow  energy
transfer between specific cellular compart-
ments.”+42:47:50.5L57.75-77 Differentiation  into

lineages, especially those with high energetic
demands, involves upregulation of tricaboxylic acid
enzymes and electron transport chain subunits to
support acceleration of cellular respiration and
oxygen consumption to increase ATP produc-
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tion.*+39-5774 Maturation of metabolic signaling
and phosphotransfer infrastructure supports the
glycolytic to oxidative metabolism transition
in lineage specification (Fig. 1).”>7® Neuronal
and cardiac progeny derived from ESCs have a
more saturated metabolome compared to their
parental counterparts, consistent with a significant
change in redox status during differentiation.’®
Treatment of ESCs with saturated substrates,
including eicosanoids, saturated fatty acids, and
acyl-carnitines promotes neuronal and cardiac
differentiation.”® Although these changes in
bioenergetics coincide with differentiation of
pluripotent cells, it remains unknown if a specific
mitochondrial function and/or metabolic capacity
must be obtained to overcome bioenergetic barriers
and define specific lineages.

Metabolic markers of differentiation

The recent literature has demonstrated a grow-
ing role for mitochondrial dynamics and energy
metabolism in driving pluripotent cell fate spec-
ification.*3>-3 Inherent cell bioenergetic markers
have been utilized to define the differentiation ca-
pacity of pluripotent cells. Despite these cells hav-
ing similar expression of pluripotency markers and
morphology, subsets of cells with less perinuclear lo-
calized mitochondria” and low-resting mitochon-
drial membrane potential have greater spontaneous
differentiation.®’ Inhibition of maturation of the
mitochondria and extended metabolic network in-
hibits differentiation,””-”®:81:82 although inhibition
of the mammalian target of rapamycin, which sig-
nificantly reduces mitochondrial oxygen consump-
tion, increases mesodermal differentiation.’® Mi-
tochondrial content and function also defines the
differentiation capacity of mesoangioblasts, a pre-
committed cardiac progenitor, with slow dividing
cells, that contain abundant mitochondria with high
membrane potential, efficiently differentiating into
cardiomyocytes, while fast-dividing cells with few
mitochondria do not respond to differentiation
stimuli.?> However, mitochondrial function may
only be required during differentiation not for the
maintenance of the progenitor state, as oxygen con-
sumption is only elevated in the fast-dividing cells
following induction of differentiation.3® The dif-
ferentiation block in fast-dividing mesoangioblasts
can be reversed by increasing mitochondrial con-
tent, while loss of mitochondria in the slow-dividing
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cells impairs differentiation.> Mitochondrial dy-
namics also facilitate in vivo cardiac development
as cardiomyocytes from early embryonic develop-
ment contain few fragmented and immature mito-
chondria that transit into extensive networks of ma-
ture mitochondria in close proximity to the devel-
oping contractile filaments to ensure energetically
competent development.

Regulators of bioenergetic maturation

Some of the molecular components contributing to
mitochondrial and bioenergetic maturation lead-
ing to pluripotent cell lineage specification have
recently been elucidated. The mitochondrial per-
meability transition pore (mPTP), a non-selective
conduit residing in the inner mitochondrial mem-
brane has been identified as a gating mechanism
underlying in vivo mitochondrial maturation and
cardiomyocyte differentiation.**-*> Early cardiomy-
ocytes have a higher mPTP open probability, re-
sulting in mitochondria with lower mitochondrial
membrane potential and greater reactive oxygen
species (ROS) generation, which ultimately impairs
development.** Closure of mPTP facilitates mat-
uration of mitochondria resulting in subsequent
cardiomyocyte differentiation.®* Additional regula-
tors of permeability transition, including mitofusin-
2, have been also implicated in pluripotent cell
differentiation.’”-3¢ Permeability transition can af-
fect cardiac differentiation via a number of vi-
tal downstream processes, including ROS produc-
tion and energy metabolism. ROS flashes appear to
modulate cardiomyocyte differentiation in both a
time- and concentration-dependent fashion. Early
commitment of cardiac progenitors may require
ROS, with subsequent cardiomyocyte differentia-
tion and maturation occurring under reduced ROS
load, as addition of stable oxidants to immature
cardiomyocytes impairs differentiation, while ad-
dition of antioxidants promotes cardiomyogene-
sis.5487:88 Low levels of ROS, potentially from high
levels of glucose provided in cell culture, acceler-
ate cardiac differentiation of stem cells by stimula-
tion of cardiac genes and transcription factors,3%-2
while high levels of ROS appear to delay the pro-
cess.®® Transient mPTP opening also uncouples
oxidative metabolism from ATP synthesis, which
would maintain a high glycolytic capacity to sup-
port the immature state, while mPTP closure would
promote oxidative metabolism to facilitate cardiac
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differentiation.***>#> This metabolic shift may also
be regulated at the level of mitochondrial sub-
strate supply, which is under the control of un-
coupling protein 2 (UCP2).* Unlike UCP1, UCP2
has yet to display physiological uncoupling activ-
ity; however, it has been shown to suppress pyru-
vate oxidation and increase fatty acid and glutamine
oxidation.”>”” Owing to UCP2 expression in, pre-
dominately, glycolytic tissues and cancer cells and
its ability to block mitochondrial pyruvate entry,
UCP2 may promote glycolytic glucose use.’**5-100
Indeed, gene silencing of UCP2 in pluripotent cells
significantly reduces extracellular acidification rate
(a surrogate marker of glycolysis) and ATP lev-
els.”* In contrast, UCP2 expression is reduced dur-
ing differentiation of pluripotent cells, with ectopic
expression of UCP2 both impairing oxygen con-
sumption and pluripotent cell differentiation by
blocking the metabolic shift from glycolysis to ox-
idative metabolism.’* Taken together, maturation of
mitochondrial function and energy metabolism is
an essential component of pluripotent cell differen-
tiation; however, further examination is required to
define the intimate metabolic reprogramming con-
ditions that drive the specification of diverse cell
lineages.

Conclusion

Recent evidence has revealed a previously unrec-
ognized role for energy metabolism in controlling
the balance between maintenance of stemness and
differentiation into specific lineages. The reliance
on glycolysis has been documented to fuel the an-
abolic and catabolic requirements to maintain stem
cells in the pluripotent state, while mitochondrial
biogenesis and maturation of mitochondrial oxida-
tive metabolism appears integral to match the ener-
getic demands of differentiation. An enabling role
for metabolic reprogramming in cell fate decisions
offers a novel perspective on molecular events man-
aging cell identity.
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