Chapter 8-II: Amino Acid Metabolism

Amino acid biosynthesis Essential amino acids Nonessential amino acids

Table 20-3Essential and NonessentialAmino Acids in Humans

Essential	Nonessential
Arginine ^{<i>a</i>}	Alanine
Histidine	Asparagine
Isoleucine	Aspartate
Leucine	Cysteine
Lysine	Glutamate
Methionine	Glutamine
Phenylalanine	Glycine
Threonine	Proline
Tryptophan	Serine
Valine	Tyrosine

^{*a*}Although mammals synthesize arginine, they cleave most of it to form urea (Section 20-3A).

Table 20-3 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

The synthesis of ANDEQ

Glutamine synthetase: vital for regulating nitrogen metabolism

Glutamine: amino group donor & storage form of ammonia Activated by α -ketoglutarate in mammalian enzyme: prevent accumulation of ammonia

Bacterial glutamine synthetase: more elaborate control

9 allosteric feedback inhibitors, each with its own binding site
 His, Trp, carbamoyl phosphate, glucosamine 6-P, AMP, CTP (end product from glutamine)
 Ala, Ser, Gly
 Covalent modification by adenylylation

^{© 2006} John Wiley & Sons

More inhibitory to adenylylated form of GS

The biosynthesis of the glutamate family of amino acids

Figure 20-30 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

The conversion of 3-phosphoglycerate to serine

Aspartate family KMT

Figure 20-32 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Pyruvate family: ILV

Figure 20-33 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

The biosynthesis of FWY

© 2006 John Wiley & Sons

Tryptophan synthase from S. typhimurium

α2β2 bifunctional enzyme
Indole-3-glycerol phosphate to indole and glyceraldehyde-3-P
Indole plus serine to form Trp
Indole is channeled between the two subunits

Figure 20-35 Fundamentals of Biochemistry, 2/e

Histidine biosynthesis

Start from PRPP (5-phosphoribosyl-α-pyrophosphate)

His involves in catalysis as nucleophile and/or general acid-base catalysis

His originate from a purine (5'-phosphoribosyl ATP): support RNA world hypothesis

Heme biosynthesis and degradation

Heme degradation

Jaundice: excess amount of bilirubin (insoluble) signals RBC destruction, liver dysfunction, and bile duct obstruction

Figure 20-38 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Biosynthesis of physiologically active amines

Epinephrine (adrenalin), norepinephrine, dopamine, serotonin (5-hydroxytryptamine), γ-aminobutyric acid (GABA), and histamine Hormones and/or neurotransmitters Catechol amines & Indole amines

Amino acid decarboxylase (PLP-dependent rxn)

The sequential synthesis of L-DOPA, dopamine, norepinephrine, and epinephrine

Figure 20-39 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Nitric oxide

Arginine: endothelium-derived relaxing factor (EDRF) making underlying smooth muscle relax

NOS: a homodimeric protein, 3 isoforms

http://www.sgul.ac.uk/depts/immunology/~dash/no/nos.html

© 2006 John Wiley & Sons

NO and cGMP

Angina pectoris (협심증)

NO & cGMP Smooth-Cholinergic muscle cell Nerve Acetylcholine Endothelial cell Increased inositol / Receptors triphosphate NO: half life of ~5 s, diffusion of ~1 mm Ca Arginine 02eNOS Endoplasmic reticulum ARTERIOLE Ca2+ Decreased Cavernous Ca nerve Myosin head detaches cGMPfrom actin Multipotential specific protein Monolayer Stem Cell - Like VSMC kinase PERICYTE Nitric Smoothoxide Endothelial Cell ARTERIOLE muscle Guanylyl relaxation Cylcase Nonadrenergic, GMP PDE 5 noncholinergic Monolayer VSMC GTP Ca2+ Multipotential 5' GMP Osteoblast - Like PERICYTE Stimulation Viagra(Sildenafil) Inhibition

http://www.wiley.com/legacy/college/boyer/0470003790/cutting_edge/viagra/viagra.htm

Nitrogen fixation

 N_2 is stable (N≡N bond *E* is 945 kJ/mol) Converted to metabolically useful form by diazotrophs Nitrogenase reduces N_2 to NH₃ Fe-protein: a homodimer containing one [4Fe-4S] cluster and two ATP binding sites MoFe-protein: α2β2 tetramer containing Fe and Mo

P cluster: consists of 2 [4Fe-3S] clusters linked through an additional sulfide ion FeMo-cofactor: consists of a [4Fe-3S] cluster and a [1Mo-3Fe-3S] cluster bridged by 3 sulfide ions

A. Vinelandii nitrogenase in complex

P-cluster

The flow of electrons in the nitrogenase-catalyzed reduction of N₂

ATP dependent conformational changes in nitrogenase ATP binding to Fe-protein ATP hydrolysis induced conformational change Alternation of redox potential from -0.29 to -0.4 V (reduction potential of N2 reduction is -0.34 V)

N₂ reduction is energetically costly

$$N_2 + 8 H^+ + 8e^- + 16 ATP \rightarrow 2 NH_3 + H_2 + 16 ADP + 16 P_i$$

6 times of electron transfer per N2 fixed: 12 ATP Futile cycle: diimine to nitrogen, 2 electrons transfer and 4 ATP Total: 16 ATP

Photobiological production of hydrogen gas as a biofuel

Hydrogenase :
$$2H^+ + 2e^- \leftrightarrow H_2$$
 (1)
Mo-nitrogenase : $N_2 + 8H^+ + 8e^- + 16ATP \rightarrow 2NH_3 + H_2 + 16ADP$ (2)

The nitrogen cycle

Interconversion of nitrogen in the biosphere

Figure 20-44 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Anammox bacteria

Anaerobic oxidation of ammonia to N₂ in the anaerobic environment Anammox reaction in anammoxosome $NH_4^+ + NO_2^- \rightarrow N_2 + 2 H_2O$

Unusual lipid (ladderanes) provides rigidity, thereby decreasing permeability

a, Simplified marine nitrogen cycle including the anammox 'sink'. Org.N, organic nitrogen. **b**, Morphology of the anammox cell and proposed model for the anammox process. HH, hydrazine (N2H4) hydrolase; HZO, hydrazine oxidizing enzyme; NR, nitrite reducing enzyme. **c**, Fluorescence *in situ* hybridization of filter material from station 7617 (142 m water depth). Green cells are total Eubacteria stained with EUB338 probe; red cells (encircled) are anammox bacteria stained with a new specific probe (AmxBS820). Nature 422, 608-611(10 April 2003)

Assimilation of fixed nitrogen

Glutamine synthetase + glutamate synthase

In bacteria & plants

Glutamate synthase: α -ketoglutarate + glutamine + NADPH + H⁺ \rightarrow 2 glutamate + NADP⁺

Glutamine synthetase : glutamate + $ATP + NH4^+ \rightarrow$ glutamine + ADP + Pi

The net result of glutamine synthetase & glutamate synthase

 α -ketoglutarate + NH₄⁺ + NADPH + ATP \rightarrow glutamate + NADP⁺ + ADP + Pi

The glutamate synthase reaction

Overall: NADPH + H⁺ + glutamine + α -ketoglutarate \longrightarrow 2 glutamate + NADP⁺ Figure 20-45 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons