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Protein degradation

Constant turning over of proteins
(1) E storage: muscle
(2) Elimination of abnormal proteins
(3) Regulation of cellular metabolism
Table 20-1 Half-Lives of Some Rat Liver Enzymes

Enzyme Half-Life (k)
Short-Lived Enzymes
Ornithine decarboxylase 0.2
. RNA polymerase | 1.3
Regulatory role ~ Tyrosine aminotransferase 2.0
Serine dehydratase 4.0
PEP carboxylase 5.0
Long-Lived Enzymes
Aldolase 118
_ o GAPDH 130
Constant catalytic activity > Cytochrome b 130
LDH 130
Cytochrome ¢ 150

Source: Dice, JL.F. and Goldberg, A.L., Arch. Biochem.
Biophys. 170, 214 (1975).
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Catabolic pathways for proteins.The ubiquitin-proteasome system (UPS) substrates include short-lived, misfolded,
aberrant and superfluous or unnecessary proteins; whereas substrates for the autophagy-lysosomal system (ALS)
include superfluous, aberrant, aggregated and long-lived proteins, as well as a subset of proteins containing a
lysosomal-targeting KFERQ motif. Although the UPS and autophagy have long been considered as independent
systems, increasing evidence suggests that they interact at several points, for instance at the level of the proteins
p62/SQTSM, NBR1, BAG3 and HDACS6.
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Lysosomal degradation

Lysosomes: ~50 hydrolytic enzymes
Proteases (cathepsins)

Cathepsins are usually characterised as members of the lysosomal cysteine protease
family. In actuality, the cathepsin family also contains members of the serine protease
(cathepsin A,G) and aspartic protease (cathepsin D,E) families as well.

Elevated cathepsin enzyme activity in serum or the extracellular matrix often signifies a
number of gross pathological conditions.

Selective degradation of cytosolic proteins
KFERQ proteins: under fasting conditions



The Cysteine Protease Network in Tumor Progression and Therapy
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Legumain (a cysteine protease) promotes
tumor cell invasion and metastasis by binding
to cell-surface integrins and activates both
matrix metalloproteinase 2 (MMP2) and
cathepsin L. It also protects cells from
programmed cell death by catalytically
inactivating caspase 9. It prevents Bid
activation by cathepsin B by binding to and
modulating the activity of the cathepsin.

Cell death



Ubiquitin: highly conserved 76 a.a. proteins
Ubiquitin involving protein breakdown
ATP-requiring
Independent of lysosomes

Proteins are marked for degradation
E1: ubiquitin-activating enzymes
E2: ubiquitin-conjugating enzymes
11 in yeast, >20 in mammals
E3: ubiquitin-protein ligase
Many species of E3 specific to a set of proteins
2 families containing HECT domain or RING finger
Each E3 is served by one or a few specific E2s
Really Interesting New Gene (RING)
Homologous to the E6-AP Carboxyl Terminus (HECT)

Human ubiquitin (76 a.a) (96% sequence identity with yeast protein)
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Polyubiquitin
At least 4 (50 or more)
Isopeptide link: Lys 48 with C-terminal carboxyl group

Three types of Ubiquitination
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Figure 1: Enzymatic cascade leading to substrate ubiquitination. Three sets of enzymes are required for ubiquitination of a targeted substrate: ubiquitin-activating
(E1), ubiquitin-conjugating (E2), and ubiquitin-ligase (E3) enzymes. There are two main classes of E3 enzymes, the RING and HECT classes, which differ in the
manner by which they transfer Ub to a target substrate. Once a Ub molecule is conjugated to its target protein, additional Ub molecules can be attached to form
chains (see Figure 2 for a more detailed illustration of Ub binding). However, since ubiquitination is a reversible process, once Ub is attached, deubiquitinating
enzymes (DUBs) can then hydrolyze the isopeptide bond between Ub and its target protein (shown by the small lightning bolt) and thus return the protein to its
previous state and release Ub. Substrates that contain polyUb chains are often targeted to the proteasome, where they are bound and subsequently degraded. The
proteasome is composed of a catalytic 20S core particle structure and two 19S regulatory caps which together are collectively termed the 26S proteasome. While
some polyubiquitinated proteins can be bound directly through polyUb binding subunits on the proteasome, others must be shuttled to the proteasome via adaptor
proteins (the binding site for Ub and adaptors is represented by a yellow circle). Once the substrate is bound to the proteasome, many ATPase subunits that make up
the proteasome utilize ATP to unfold the protein, simultaneously deubiquitinating the protein and releasing Ub while cleaving the protein into small peptide

fragments.



Ubiquitin system has both housekeeping and regulatory functions

The N-end rule
Half-lives of many proteins depend on their N-terminal residues
Conserved in both prokaryotes and eukaryotes
Destabilizing residues: D R L K F, half-lives of 2~3 min
Stabilizing residues: A G M S T V, half-lives of >10 hrs (in pro) or >20 (in Eu)

Destabilizing signal in eukaryotes
Ubiquitination action of E3a (Ring finger E3)
Variety of ubiquitination signal by more E3s .
PEST proteins are rapidly degraded RENICMREIENGAERR KRR
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The proteasome

Degradation of ubiquinated proteins

Multiprotein complex: ~2100 kD (26S proteasome)
7 different types of a-like and B-like subunits

EM-image of 26S proteasome
& P X-ray structure of 20S proteasome
C2 & pseudo-sevenfold rotational symmetry
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Figure 20-3 Fundamentals of Biochemistry, 2/e



Figure 20-4b Fundamentals of Biochemistry, 2/e

Three proteolytic sites
B1 subunit: cleaving after acidic residue
B2 subunit: basic residue
B5 subunit: hydrophobic
Yielding fragments of ~8 residues



198 caps

~18 different subunits: Base complex + lid complex
Base complex: 9 subunits, 6 are ATPases
Lid complex: 8 subunits
Control the access of ubiquinated proteins to the 20S proteasome
Recognize ubiquinated proteins
Unfold them
Feed them into 20S in an ATP-dependent manner

Eubacteria

lack 20S proteasome

but also contain self-compartmentalized proteases
similar shape and function

meaning early evolutionary history

E. coli Lon and Clp

Figure 20-5 Fundamentals of Biochemistry, 2/e



Amino acid deamination

Amino group to ammonia and to urea
Carbon skeleton (a-keto acid)

Amino acid

74BN

CO; Glucose Acetyl-CoA Ketone bodies
+
H,0

Urea

Figure 20-6 Fundamentals of Biochemistry, 2/e
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Transamination
The transfer of amino group to an a-keto acid

The predominant amino group acceptor
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The mechanism of

PLP-dependent transamination

1-2-3: Conversion of an amino acid to a keto acid Hals
3’-2’-1’: Conversion of an a-keto acid to an amino acid
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Transaminases are freely reversible in rxn
Participate in both degradation and synthesis

Transaminases as a clinical marker
SGOT (serum glutamate-oxaloacetate transaminase)
= AST (aspartate transaminase)
SGPT (serum glutamate-pyruvate transaminase)
= ALT (alanine transaminase)
Heart or liver damage: increase of SGOT and SGPT

GOT (AST, aspartate transaminase ): Aspartate + a-ketoglutarate = oxaloacetate + glutamate
GPT (ALT, alanine transaminase): alanine + a-ketoglutarate = pyruvate + glutamate




Oxidative deamination by glutamate dehydrogenase (GDH)

urca
NAD(P)* NAD(P)H + H* H,0 NHz*
NH3* 0
| NH + Il
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Glutamate a-Iminoglutarate a-Ketoglutarate
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Mitochondrial enzyme

Accept either NAD™ or NADP™*

Near equilibrium reaction under physiological condition (?) (AG®’=30 kJ/mol)
Allosteric inhibition by GTP and NADH: a-ketoglutarate is an intermediate of CAC

GDH mutation causes hyperinsulinism (hypoglycemia & hyperammonemia)
decreased sensitivity to GTP inhibition & therefore increased GDH activity

Reversible ADP-ribosylation (inactive by ADP-ribosylation)
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The urea cycle

Excess nitrogen to ammonia, urea, uric acid N

) . Ammonia Urea Uric acid
synthesized in liver T
secreted into the blood

sequestered by the kidney for excretion in the urine

The overall reaction
NH3
NH3; + HCO3 + ~0OC—CH,—CH—COO™
Aspartate
3 ATP
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The urea cvycle

Two mitochondrial reactions
Three cytosolic reactions

Carbamoyl phosphate synthetase I
Ornithine transcarbamoylase
Argininosuccinate synthetase
Argininosuccinase

Arginase (I)
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Carbamoyl phosphate synthetase (CPS)
Eukaryotes have two CPS
Mitochondrial: CPS I, uses ammonia as its nitrogen donor and involves in urea synthesis
Cytosolic: CPS II, uses glutamine as its nitrogen donor
and involved in pyrimidine synthesis

The mechanism of action of CPS I: rate-limiting step
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Regulation of the urea cycle

CPS I: allosteric activation by N-acetylglutamate oo
Amino acid breakdown (CH2)2 O
Increased glutamate H—CI— N—ﬂ—CH3
Increased N-acetylglutamate -00 é H
Increased urea synthesis
Y N-Acetylglutamate

©2008 John Wiley & Sons

Inherited deficiency in urea cycle enzymes other than arginase
Substrate buildup (including ammonia)
Increased rate & normal urea production
Hyperammonemia

. Brain damage




Breakdown of amino acids

Glucogenic amino acids
Glucose precursor

Ketogenic amino acids
Precursors of fatty acids or ketone bodies

Purely ketogenic: Lys, Leu

Alanine
Cysteine
Glycine
Serine
Threonine
Tryptophan ..Jseleugine...,
# ! Leucine
? Lysine :
CO, Pyruvate “"Thréonine ™
1 e S
Acetyl-Cod ) — Atetofmetute
Leucine
Lysine
Asparagine Phenylalanine
Aspartate Tryptophan
Tyrosine
Oxaloacetate Citrate
Aspartate f Citric \
Phenylalanine — Fumarate acid Isocitrate
Tyrosine cycle
CO,

Succinyl-CoA o-Ketoglutarate

\

Arginine
Isoleucine co2 Glgtamate
Methionine Glutamine
Valine Histidine

Proline
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Degradation to pyruvate
ACGST

PLP containing enzyme
Serine dehydratase: 2
Serine hydroxymethyltransferase: 4

Glycine cleavage system (rxn 3)

A major route of glycine degradation in mammals

Inherited deficiency: nonketotic hyperglycinemia
(glycine encephalopathy)

Elevated glycine levels may be harmless in
blood, but lethal in brain (glycine is a
neurotransmitter).
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2. Serine hydroxymethyltransferase
PLP-dependent C,-C; bond formation and cleavage

A
a 19—
o) H '

H3C—HCg—C,—COO0™ -
. P Amino acid-PLP Schiff base F .
X

+

PLP acts as a coenzyme in all H. —N
NcA H

transamination reactions, and in some
decarboxylation and deamination " 0
reactions of amino acids. 050 | &*
+ -~
N
I
H

Delocalized o carbanion

igure pg 700 i istry, 2/e Figure 20-16 Fundamentals of Biochemistry, 2/e
©2006 John Wiley & Sons ©2006 John Wiley & Sons



Asn and Asp to oxaloacetate
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Degradation to a-ketoglutarate

REQHP

Gln acts as an ammonia transport system
between

the liver (synthesis) and

the kidney (hydrolyzed by glutaminase)

During metabolic acidosis
Glutaminase eliminate excess acid
By combining ammonia with a proton
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Degradation to succinyl-CoA
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Homocysteine 1s a marker of atherosclerosis
Homocysteine conc is determined by the rates of
rxn 2,3.4 and rxn 5
Hyperhomocysteinemia (homocysteinuria)
associated with cardiovascular disease
due to oxidative damage to endothelial cells
(deficiency of folate or vit. B12)

Associated with neural tube defects (NTD)
Spina bifida
Anencephaly (http://www.path.sunysb.edu/neuropath/developmental.htm)
High incidence

MTHEFR mutations (g% = 0.01)
N> N10-methylene-THF to N>-methyl-THF (cofactor for step 4)



Tetrahydrofolates (THFs): one-carbon carriers
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Table 20-2 Oxidation Levels of C; Groups Carried by THF

L. Oxidation Level Group Carried THF Derivative(s)
Biotin: Coz Methanol Methyl (—CH,) N>-Methyl-THF
SAM: CH.- Formaldehyde  Methylene (—CH,—) N°,N'""-Methylene-THF
. 3 Formate Formyl (—CH=0) N?-Formyl-THF, N'°-formyl-THF
. 1 Formimino (—CH=NH) N>-Formimino-THF
THF various Cl groups Methenyl (—CH=) N’ N'"-Methenyl-THF

Table 20-2 Fundamentals of Biochemistry, 2/e
© 2006 John Wiley & Sons



Interconversion of the C1 units carried by THF
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Sulfonamides are antibiotics
Analog of the p-aminobenzoic acid of THF
Inhibits folic acid synthesis

Mammals lack folic acid synthesis

0 o]
H2N—©—%—NH—R HzN—©—g—OH
0
Sulfonamides p-Aminobenzoic acid

(R = H, sulfanilamide)
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Degradation of the

branched chai ' 1d Ty I i
ranched chain amino acids Vb (A)Isoleucine: R, = CHy—, Ry = CHy—CH;—
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Lysine degradation
1n mammalian liver

7 reactions were encountered previously
(rxn 4,5,6,8-11)

Deficiency in rxn 1
Hyperlysinemia (in blood)
Hyperlysinuria (in urine)
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Tryptophan degradation

IDO (indoleamine 2,3-dioxygenase)

0 H
HCoO™ [ |
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—
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I NH> 4 NH
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OH
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Immunosuppression activity of IDO
tryptophan depletion or its metabolite?

,'g- FLT1
: |utc.r > |Angiog

— [inos
VT

COX2 —l- coLaat
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f

IL4, 110, IL13
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Phenylalanine degradation

Tetrahydrobiopterin + O3

I'|\IH3'" thy robiopterin + H,0
@CHZ—CH —C00™ OCH;—CH —Co0™

Phenylalanine 1 Tyrosine
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3 Dihydroascorbate

OH + Hzo + COZ
‘ooc—ﬁ—H CH3—ﬁ—CH2— coo-
H—C—co0~ 4+ 0 CHy—COO~
Fumarate Acetouacetate
HO  Homogentisate
HZOJ 6 —‘TLOLp
“00C—C—H H—C—CO00~
b L

4-Fumarylacetoacetate 4-Maleylacetoacetate
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Pteridine ring nucleus of biopterin and folate
Pterins are redox cofactors

OO THE® XL

Pteridine Isoulloxazine Flavin
il
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3 HO OH
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; LA
Pterin Folate: R= _f_ﬂ_@c_ﬂ_ﬁ_f_f_cw_
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Phenylketonuria and alkaptonuria

Alkaptonuria: deficiency of homogentisate dioxygenase
excretion of homogentisic acid

Phenylketonuria (PKU)
hyperphenylalaninemia: converted to phenylketo compounds
high phe inhibits tyrosine hydroxylation: reduced melanin

high phe saturates LNAAT and blocks transport of LNAA into brain

BH4 synthesis deficiencies

O

I
©>—CH2—c—c00‘
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