Chapter 5-II: Electron Transport and Oxidative Phosphorylation

Oxidative phosphorylation

Energy coupling: electron transport & ATP synthesis

The chemiosmotic theory: 1961, Peter Mitchell key observation: page 568 Electron transport generates a proton gradient: electrochemical H⁺ gradient in IMS proton motive force $\Delta G = RT \ln([A]_{out}/[A]_{in}] + Z_A F \Delta \Psi \text{ (page 285)} (Z_A = \text{ionic charge of A})$ $= 2.3 \text{RT} [\text{pH}(\text{in}) - \text{pH}(\text{out})] + Z_A F \Delta \Psi = 21.5 \text{ kJ/mol}$ pH (out) < pH (in) (chemical, 0.75 units higher) $\Delta \Psi (\Psi_{in} - \Psi_{out}) > 0 \text{ (from negative to positive) (electrical, 0.168 V)}$

Figure 17-20 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Bacterial ETC and oxidative phosphorylation

Mitochondria 02 Cytochrome Dehydrogenase → terminal oxidase → CoQ → Cvt ccomplex H_2O Aerobic bacteria 02 Cytochrome terminal oxidase complex H₂O Dehydrogenase → CóQ 02 terminal oxidase H₂O

Box 17-3 figure 2 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

ATP synthase

Proton-pumping ATP synthase, F₁F₀-ATPase
Composed of two functional units: F0, F1
F0: a water insoluble transmembrane protein containing as many as 8 subunits a:b:c=1:2:9~12
F1: a water soluble peripheral membrane protein composed of 5 types of subunits

 α 3β3γδε, ATPase activity

Animation of ATP synthase

http://www.dnatube.com/video/104/ATP-synthase-structure-and-mechanism http://www.youtube.com/watch?v=3y1dO4nNaKY

EM of F₁F₀-ATPase

EM of cristae

Figure 17-21a Fundamentals of Biochemistry, 2/e

Figure 17-21b Fundamentals of Biochemistry, 2/e

Figure 17-21c Fundamentals of Biochemistry, 2/e

F₁-ATPase from bovine heart mitochondria

V

Top view: $\alpha\beta$

Figure 17-22a Fundamentals of Biochemistry, 2/e

Figure 17-22b Fundamentals of Biochemistry, 2/e

Figure 17-22c Fundamentals of Biochemistry, 2/e

The binding change mechanism

The mechanism of ATP synthesis by proton-locating ATP synthase F0: carry out translocation of protons F1: ATP synthesis F0 & F1 interaction: coupling of the dissipation of the proton gradient with ATP synthesis

<u>3 binding sites, cyclic conformational changes, ATP release by E (by Paul Boyer)</u>

Binding changes driven by the rotation of catalytic subunits Binding of ADP and Pi to L Conformational change of L to T: ATP synthesis Release of ATP by the free E from proton flow

Cylindrical bearing & Lubricated free rotation

 γ Subunit is a molecular cam shaft in linking the proton gradient-driven rotational motor to the conformational changes in the catalytic sites of F1

Rotation of the C-ring

Figure 17-27a Fundamentals of Biochemistry, 2/e

http://www.res.titech.ac.jp/~seibutu/main.html?right/~seibutu/projects/f1_e.html

Figure 17-27b Fundamentals of Biochemistry, 2/e

The P/O ratio

The amount of ATP synthesized to the amount of oxygen reduced

3 ATP from NADH 2 ATP from FADH2 1 ATP from tetramethyl-p-phenylenediamine *** the actual P/O ratios may not be integral numbers

Uncoupling oxidative phosphorylation

Protons are permeable only through F0 portion of ATP synthase Increased permeability via another route: dissipation of electrochemical gradient: Artificial uncoupler: 2,4-dinitrophenol (DNP), once used as a diet pill

Uncoupling in brown adipose tissue: heat generation

Nonshivering thermogenesis Uncoupling protein: UCP1, UCP2, UCP3 Affects metabolism rate & body temp

> Norepinephrine 000000000 Receptor Adenylate m 000000000 cyclase Cytosol cAMP + Pi ATP R₂C₂ R₂ (cAMP)₄ 2C + protein kinase A protein kinase A (inactive) (active) triacylglycerol triacylglycerol lipase lipase — P (inactive) ATP ADP (active) Electron transport open channel Free Triacylglycerols UCP1 fatty 🔫 H₂O ATP F1F0" (Thermogenin) acids н* proton **ATPase** $ADP + P_i$ channel Mit ATP, ADP, GTP, GDP block channel Mitochondrion

Box 17-4 figure 1 Fundamentals of Biochemistry, 2/e

Box 17-4 figure 2 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Control of oxidative metabolism

ATP is never produced more rapidly than necessary 100-fold change in the rate of ATP consumption between sleep & exercise ATP concentration in the body at any one time: <0.1 mol

Adult woman: 1500~1800 kcal (6300-7500 kJ) Corresponding to > 200 mol of ATP hydrolysis

NADH to cytochrome c functions at near equilibrium Cytochrome c oxidase reaction is irreversible and depends on [reduced cytochrome c (c²⁺)] $\frac{1}{2}NADH + cyt.c(+3) + ADP + \Pi \leftrightarrow \frac{1}{2}NAD^{+} + cyt.c(+2) + ATF$ $K_{eq} = (\frac{[NAD]]}{[NADH]})^{1/2} \frac{[c2 +]}{[c3 +]} \frac{[ATP]}{[ADP][Pi]}$ \int_{J} $\frac{[c2 +]}{[c3 +]} = (\frac{[NADH]]}{[NAD]})^{1/2} \frac{[ADP][Pi]}{[ATP]} K_{eqt}$

ATP mass action ratio = [ATP]/[ADP][Pi] The higher [NADH]/[NAD] and the lower the ATP mass action ratio the higher [c²⁺] and the higher cyt.c oxidase activity

During resting, ATP mass action ratio is high

Coordinated control

Figure 17-29 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Physiological implication of aerobic metabolism

High efficiency: 19 times more than anaerobic

When anaerobically growing yeast are exposed to oxygen, glucose consumption drops

Disadvantages

Oxygen deprivation Generation of reactive oxygen species (ROS)

Electrostatic effects in human Cu,Zn-SOD

Figure 17-30a Fundamentals of Biochemistry, 2/e

Figure 17-30b Fundamentals of Biochemistry, 2/e

Oxygen deprivation in heart attack and stroke

- Myocardial infarction (heart attack)
- Stroke (brain)
- Failure in maintaining intracellular ion conc.
- Increased membrane permeability
- Increased anaerobic glycolysis: decreased pH to allow lysosomal enzyme active
- Cell death

Necrotic tissue after a heart attack

Box 17-5 Fundamentals of Biochemistry, 2/e

Reactive oxygen species (ROS) resulting from partial reduction of oxygen

Extremely short-lived but readily extract electrons from other molecules, converting them to free radicals and thereby initiating a chain reaction Responsible for neurodegenerative diseases & aging process: oxidative damage

Reactive species	Antioxidant
Single oxygen ¹ O ₂	vitamin A, vitamin E
Superoxide radical O ₂ ⁻ •	superoxide dismutase, vitamin C
Hydrogen peroxide H ₂ O ₂	catalase, glutathione peroxidase
Peroxyl radical ROO•	vitamin C, vitamin E
Lipid peroxyl radical LOO•	vitamin E
Hydroxyl radical OH•	vitamin C

ANTI-OXIDANT ENZYMES

Superoxide dismutase (SOD): 2 $O_2^{-\bullet} + 2H^+ \rightarrow H_2O_2 + O_2$

Mitochondrial & bacterial: Mn^{2+} (or Fe^{2+}) cofactor

Cytoplasmic – Cu²⁺-Zn²⁺ cofactors; mutations associated with familial amyotrophic lateral sclerosis (FALS)

In human: SOD1, SOD2, SOD3 (extracellular)

Catalase : $2 H_2O_2 \rightarrow H_2O + O_2$

Glutathione peroxidase: $2 \text{ GSH} + \text{H}_2\text{O}_2 \rightarrow \text{GSSG} + 2 \text{H}_2\text{O}$ (Uses selenium as a cofactor)

