Chapter 5-I: Electron Transport and Oxidative Phosphorylation

A resting human body consumes 420 kJ/h (~100 J/sec)

Electrochemical events in mitochondria 0.2 V, 500 Amp (=100 W = 100 J/sec) equivalent to $\sim 3x10^{21}$ protons/sec

Chapter 17 Opener Fundamentals of Biochemistry, 2/e

2NADH Figure 17-1 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

The mitochondrion: bacterial size, variable shapes, ~2000/cell <u>Anatomy</u>

Outer membrane: porins (free diffusion of molecules up to 10 kD), Inner membrane: ~75% protein by mass, freely permeable only to O₂, CO₂, H₂O numerous transport proteins (ATP, ADP, pyruvate, Ca²⁺, phosphate) Intermembrane space: equivalent to cytosol Matrix: enzymes, DNA, RNA, ribosomes Cristae: form microenvironments, local concentration of chemicals

Figure 17-2 Fundamentals of Biochemistry, 2/e

Figure 17-3 Fundamentals of Biochemistry, 2/e

Figure 17-4 Fundamentals of Biochemistry, 2/e

Neurospora sp. mitochondrial structure

Mitochondrial transport system

Inner membrane proteins

- 1. Transport of cytosolic reducing equivalents Malate-aspartate shuttle (page 504) Glycerophosphate shuttle: in insect flight muscle
- 2. ADP-ATP transport

Translocator (adenine nucleotide translocase) Electrogenic antiport: export of ATP & import of ADP resulting in export of one negative charge driven by membrane potential difference

3. Phosphate transport

Phosphate carrier: Pi return to mitochondria ATP synthesis in mitochondria, utilization in cytosol Electroneutral Pi-H symport driven by ΔpH

Electron transport

Electron transport chain (ETC) depending on reduction potentials

 $\Delta G^{\circ} = -nF\Delta E^{\circ}$

1 mol of NADH oxidation: -218 kJ/mol

1 mol of ATP synthesis: 30.5 kJ/mol

Thermodynamic efficiency: $30.5 \times 3 \times 100 / 218 = 42\%$ under standard conditions

It is ~70% under physiological conditions

© 2006 John Wiley & Sons

Half-Reaction	$\mathcal{C}'(V)$
$\frac{1}{2}$ O ₂ + 2 H ⁺ + 2 $e^- \Longrightarrow$ H ₂ O	0.815
$SO_4^{2-} + 2 H^+ + 2 e^- \Longrightarrow SO_3^{2-} + H_2O$	0.48
$NO_3^- + 2 H^+ + 2 e^- \Longrightarrow NO_2^- + H_2O$	0.42
Cytochrome a_3 (Fe ³⁺) + $e^- \Longrightarrow$ cytochrome a_3 (Fe ²⁺)	0.385
$O_2(g) + 2 H^+ + 2 e^- \Longrightarrow H_2O_2$	0.295
Cytochrome a (Fe ³⁺) + $e^- \Longrightarrow$ cytochrome a (Fe ²⁺)	0.29
Cytochrome c (Fe ³⁺) + $e^- \rightleftharpoons$ cytochrome c (Fe ²⁺)	0.235
Cytochrome c_1 (Fe ³⁺) + $e^- \Longrightarrow$ cytochrome c_1 (Fe ²⁺)	0.22
Cytochrome b (Fe ³⁺) + $e^- \Longrightarrow$ cytochrome b (Fe ²⁺) (<i>mitochondrial</i>)	0.077
Ubiquinone + 2 H ⁺ + 2 $e^- \Longrightarrow$ ubiquinol	0.045
Fumarate ⁻ + 2 H ⁺ + 2 $e^- \Longrightarrow$ succinate ⁻	0.031
$FAD + 2 H^+ + 2 e^- \Longrightarrow FADH_2$ (in flavoproteins)	$\sim 0.$
$Oxaloacetate^- + 2 H^+ + 2 e^- \Longrightarrow malate^-$	-0.166
$Pyruvate^{-} + 2 H^{+} + 2 e^{-} \Longrightarrow lactate^{-}$	-0.185
Acetaldehyde + 2 H ⁺ + 2 $e^- \Longrightarrow$ ethanol	-0.197
$FAD + 2 H^+ + 2 e^- \Longrightarrow FADH_2$ (free coenzyme)	-0.219
$S + 2 H^+ + 2 e^- \Longrightarrow H_2 S$	-0.23
Lipoic acid + 2 H ⁺ + 2 $e^- \Longrightarrow$ dihydrolipoic acid	-0.29
$NAD^+ + H^+ + 2 e^- \Longrightarrow NADH$	-0.315
$NADP^+ + H^+ + 2 e^- \Longrightarrow NADPH$	-0.320
Cystine + 2 H ⁺ + 2 $e^- \Longrightarrow$ 2 cysteine	-0.340
Acetoacetate ⁻ + 2 H ⁺ + 2 $e^- \Longrightarrow \beta$ -hydroxybutyrate ⁻	-0.346
$\mathrm{H}^+ + e^- \rightleftharpoons \frac{1}{2} \mathrm{H}_2$	-0.421
Acetate ⁻ + 3 H ⁺ + 2 $e^- \Longrightarrow$ acetaldehyde + H ₂ O	-0.581

 Table 13-3
 Standard Reduction Potentials of Some Biochemically Important

 Half-Reactions
 Figure 13-3

Source: Mostly from Loach, P.A., *In* Fasman, G.D. (Ed.), *Handbook of Biochemistry and Molecular Biology* (3rd ed.), Physical and Chemical Data, Vol. I, pp. 123–130, CRC Press (1976).

Table 13-3 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

ETC inhibitors

Measuring the effect on O₂ consumption Restoration of ETC by addition of intermediates

© 2006 John Wiley & Sons

Component	$\mathscr{E}^{\circ \prime}\left(\mathrm{V} ight)$
NADH	-0.315
Complex I (NADH–CoQ oxidoreductase; ~900 kD, 43 subunits):	
FMN	?
(Fe–S)N-1a	-0.380
(Fe-S)N-1b	-0.250
(Fe-S)N-2	-0.030
(Fe-S)N-3,4	-0.245
(Fe-S)N-5,6	-0.270
Succinate	0.031
Complex II (succinate-CoQ oxidoreductase; ~120 kD, 4 subunits):	
FAD	-0.040
[2Fe-2S]	-0.030
[4Fe-4S]	-0.245
[3Fe-4S]	0.060
Heme b_{560}	-0.080
Coenzyme Q	0.045
Complex III (CoQ-cytochrome c oxidoreductase; ~240 kD,	
9–11 subunits):	
Heme $b_{\rm H} (b_{562})$	0.030
Heme $b_{L}(b_{566})$	-0.030
[2Fe-2S]	0.280
Heme c_1	0.215
Cytochrome c	0.235
Complex IV (cytochrome c oxidase; \sim 205 kD, 8–13 subunits):	
Heme a	0.210
Cu _A	0.245
Cu _B	0.340
Heme a_3	0.385
O ₂	0.815

 Table 17-1 Reduction Potentials of Electron-Transport Chain Components in Resting Mitochondria

Source: Mainly Wilson, D.F., Erecinska, M., and Dutton, P.L., Annu. Rev. Biophys. Bioeng. **3**, 205 and 208 (1974); and Wilson, D.F., in Bittar, E.E. (Ed.), Membrane Structure and Function, Vol. 1, p. 160, Wiley (1980).

Table 17-1 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

ETC proteins

Not associated Not in equimolar amounts

Figure 17-8 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Complex I

NADH-CoQ oxidoreductase 43 subunits in mammals 1 FMN 6~7 iron-sulfur clusters

Iron-sulfur clusters Reduction & oxidation of one-electron

Bacterial ferredoxin

Figure 17-10 Fundamentals of Biochemistry, 2/e

EM at 22 Å

Figure 17-9 Fundamentals of Biochemistry, 2/e

Electron transfer

Jumping between protein-embedded redox groups separated by <14 Å ~10 fold decrease in ET rates for each 1.7 Å increase in distance

Proton translocation

Transfer of 4 protons Driven by <u>conformational changes</u> induced by redox state, which <u>alter pK values</u> of ionizable side chains probably via proton jumping (proton wire) including water

Figure 2-15 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Bacteriorhodopsin: a model proton pump Light driven proton pump

Cytochromes: electron transfer heme proteins

Variable wavelength of α peak b560: heme b with α band absorbance at 560 nm

Different cytochromes with differently substituted heme group Different heme environment causes different α peak wavelengths

Box 17-1 figure 2 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Complex II

Complex III (cytochrome bc1)

Two b type cytochrome: Heme b_L & b_H.
b562 (High potential)
b566 (Low potential)
One c1 cyt.
One [2Fe-2S] cluster: Rieske center (ISP)
His instead of Cys

Yeast Homodimer with 9 subunits

Figure 17-14 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Unnumbered figure pg 563 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Figure 17-15 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Cyt.c: a soluble electron carrier

A peripheral membrane protein Shuttle electrons between Complex III and IV

Conserved structure and invariant Lys residues Differential labeling of ε -amino by acetylation Complementary interaction with – charges

Binding to bc1 complex: Interfacial area: 880 Å² Less tenuous than protein-protein interaction (<1600) Fast binding & release Lys protected from acetylation when bound to bc1 or oxidase

Complex IV (cyt.c oxidase)

4 cytochrome c (Fe²⁺) + 4 H⁺ + $O_2 \rightarrow$ 4 cytochrome c (Fe³⁺) + 2 H₂O Encoded by mitochondrial (Subunit I, II, III) & nuclear DNAs

<u>Four redox centers</u> Cytochrome a: Subunit I Cytochrome a3: Subunit I CuB: Subunit I CuA center: a pair of copper atoms, bridged by the sulfur atoms of Cys in Subunit II

Figure 17-17 Fundamentals of Biochemistry, 2/e

Bovine heart complex (homodimer of 26 subunits)

Reduction of O_2 by complex IV

Take place at cytochrome a3-CuB binuclear complex Simultaneous input of 4 electrons Fully reduced Fe(II)-Cu(I) provide only 3 electrons to O2 Where comes the 4th? Tyr244 by forming a transient Tyr radical (TyrO[•]) (Tyr244: electron and proton donor)

Cytochrome c oxidase has two proton-translocating channels

