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Glycolysis
Embden-Meyerhof-Parnas pathway

Generation of
two pyruvate molecules
2 ATP
2 NADH

10 enzymatic reactions to
generate high-E compounds

stage I: two glyceraldehyde-3-P
two ADP

stage IlI: two pyruvate
four ATP

Bypass to pentose phosphate pathway
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Stage |

Hexokinase: glucose to G6P (ATP to ADP)
Phosphoglucose isomerase (PGI): G6P to F6P
Phosphofructokinase (PFK): F6P to FBP (ATP to ADP)
Aldolase: FBP to DHAP & GAP

Triose phosphate isomerase (TIM): DHAP to GAP

Net: glucose to 2 GAP (2ATP to 2ADP)
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Hexokinase

Nonspecific enzyme
low Km

Glucokinase
Liver enzyme
high Km
blood glucose control
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Substrate induced conformational change
prevent ATP hydrolysis

Figure 14-2b Fundamentals of Biochemistry, 2/e



A glucose sensor In beta cells
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Phosphoglucose isomerase (PGl)
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Fructose-6-phosphate (F6P)
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Phosphofructokinase (PFK)

Central role in control of glycolysis as a rate-determining step
Allosteric regulation
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Aldolase
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Stabilization of enolate intermediate through increased electron delocalization



Triose phosphate isomerase (TIM)

DHAP-GAP: ketose-aldose isomers
Isomerization via enediol intermediate
General acid-base catalysis

Catalytically perfect enzyme: diffusion controlled reaction rate

Keq = [GAP]/[DHAP] = 4.73 x 102
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Stage I

GAP dehydrogenase (GAPDH): GAP to 1,3-BPG (NAD to NADH)
Phosphoglycerate kinase (PGK): 1,3-BPG to 3PG (ADP to ATP)
Phosphoglycerate mutase (PGM): 3PG to 2PG

Enolase: 2PG to phosphoenolpyruvate (PEP)

Pyruvate kinase (PK): PEP to pyruvate (ADP to ATP) ®
|NAD"‘|

Net: 2GAP to 2 pyruvate (4ADP to 4ATP & 2NAD to 2NADH)
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GAP dehydrogenase (GAPDH)

Generation of high-E compound
Driven by oxidation of aldehyde
Generation of NADH

Slightly unfavorable reaction: AG°” = +6.7 kJ/mol
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Reactions to elucidate the enzymatic mechanism

(a)
HI N
I TH3 Other
Enzyme— CH;—SH + ICH,C00™ Enzyme—CH;—S$—CH€00” —— CH—CHy—5—CH2C00™ + amino
protein | id
" " hydrolysismo aclds
GAPDH Active site lodoacetate Carboxy-
Cys methylcysteine
(b)
o\\ch oﬁc/opogz-
H—%—OH + NAD' + P; GAPDH, H—%—OH + NAD?H
CH,0P032~ CH,0P032-
[1-3HIGAP 1,3-Bisphosphoglycerate  direct hydride transfer
(1,3-BPG)
()
o (v 0 0"
S I GAPDH i 5|
HO=P—0 + o%c/o—ﬁ':o ——— HO—P—0" 4 o%c/o—f;:o
o~ | o~ o~ | o~
CH3 CHs
Acetyl phosphate . .
Fgura 148 Fundamentals of Blochemistry /e Acyl-enzyme intermediate

@ 2006 John Wiley & Sons



Enzymatic mechanism of GAPDH
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Phosphoglycerate kinase (PKG)
First ATP generation: substrate level phosphorylation
Strong exergonic reaction: coupled to GAPDH rxn
to make ATP and NADH
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Phosphoglycerate mutase (PGM)
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2,3-BPG In erythrocyte
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Enolase

Generation of 2" high-E intermediate
Dehydration rxn to produce unstable enol form
2PG hydrolysis release insufficient free E
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Pyruvate kinase (PK)

Conversion of unstable enol to keto form
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3 glycolytic products

ATP
NADH: electron transport
Pyruvate: fermentation

Distribution of glucose after a meal
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Fermentation: the anaerobic fate of pyruvate
Aerobic condition: pyruvate to citric acid cycle
Anaerobic condition: lactate or alcohol fermentation

reduction of pyruvate
regeneration of NAD+

Glucose

+
glycolysis DAL
NADH

Pyruvate

5

-~ NaD*
oxidative NADH
phosphorylation ( NADH alcoholic
\ citric acid homolactic fermentation
NADH cycle (ermentation NAD*
NAD*
\4
CO; | |H0 Lactate CO, || Ethanol
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Otto Warburg (1931)

Cancer cells have increased glycolysis and impaired OXPHOS
Tumor cell glycolysis >>> normal cells ( ~80% of glucose)
AMPK (AMP-activated protein kinase) senses AMP/ATP ratio drives glycolysis via HK, GLUT1 induction

Mormal cell || Hyperplasia L  Dwsplasia L_§  Caminoma | p  Malignancy

r L
sAdequate homaogeneous perfusion sHeterogeneous perfusion
sMormaoia (little HIF 1o activation ) sHypeotia (profound HIF Lo actiation)
sAdequate substrate availabilicy sInadequate substrate availability
sHomeogeneous tissue architecture sHeterogenecus tissue architecture
sReliance an plentiful OxPhos shitachondrial defects
sGlucose-ghecogen pan-inhibit AMPE sGlucose-ghreogen depleted with partial AMPE activaticon
sZelective growth advantage sGlycolytic switch and proliferation advantage
sMalignant transformation

Lancet 2006; 267: 618-21



Alcoholic fermentation

Pryuvate to ethanol and CO,
Two consecutive reactions via acetaldehyde
Pyruvate decarboxylase: TPP (thiamine pyrophosphate) as a coenzyme

Alcohol dehydrogenase (ADH):

co f 1 nant
o 0 2 o NADH NAD OH
| 7 1) 7 2 |
CH3—C—C CH3z3—C CHz3—C—H
\ _ pyruvate \ alcohol |
decarboxylase H dehydrogenase H

Pyruvate Acetaldehyde Ethanol

Figure 14-18 Fund Is of Biochemistry, 2/e
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Thiamine (vitamine B1) deficiency
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ADH

Zn enzyme

Stabilize the developing negative charge in the transition state

Acetaldehyde to ethanol and the reverse
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Glycolysis in skeletal muscles

Slow-twitching (type I)
rich in mitochondria (red fiber: heme-containing cytochrome)

Fast-twitching (type II)
devoid of mitochondria (white fiber)

How about birds?
How about sprinters and distance runners?

Slow-twitch muscle fiber Fast-twitch muscle fiber

Box 14-3 Fundamentals of Biochemistry, 2/e



(b) Cardiac
muscle

(c) Smooth
muscle
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Comparison of Slow and Fast Twitch Fibers

Use (examples)
Motor unit size
ATPase activity *
Contraction speed
Fatigue resistance
Myoglobin content
Capillary density
Fiber color

Glycolytic enzymes
Mitochondrial content
*Rapid breakdown of ATP

& E
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= gy, Rl f at
. ratmATPase (pH 10.£
fetths e, U L
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Type | Type lla Type lIb
(slow-oxidative) (fast-oxidative) (fast-glycolytic)
Posture Walking Sprinting
100+ fibers 2-6 fibers 2-6 fibers
Low High High
Slow Fast Fast
High Intermediate Low
High High Low
High Intermediate Low
Red(dark) Red White
Low Intermediate  High
Packed Intermediate = Sparse
See also Table 12-2 in Silverthorn
Type lla Type llb
Oxidative Glycolytic
Marathoners 82% 18%
Distance swimmers 74 26
Couch potatoes 45 L
Sprinters 37 63
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