
Chapter 1:

Introduction to Metabolism

Chapter 13 Opener Fundamentals of Biochemistry, 2/e

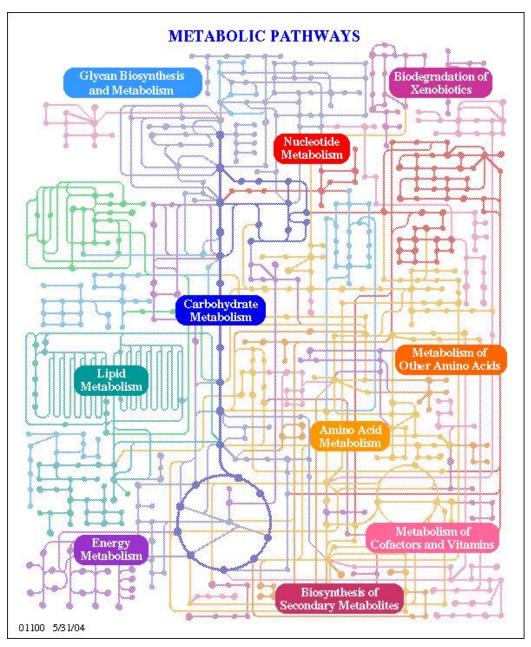


Diagram taken from the <u>SYSFYS project</u> carried out by the University of Helinski Computer Department.

http://labrat.fieldofscience.com/2010/02/metabolomics.html

Metabolomics

modified from Nature 2008, 455,1054-1056

5년내 사망위험 예측 혈액검사법 개발

http://www.e-healthnews.com/news/article_view.php?art_id=106705

<u>Trophic strategies:</u> nutritional requirements

Autotrophs

chemolithotrophs photoautotrophs

Energy

Heterotrophs

Obligate aerobes
Anaerobes
facultative anaerobic
obligate anaerobic

Electron acceptor (oxidizing agent)

Metabolic pathway

Catabolic & anabolic Enzymes & metabolites

Roles of ATP and NADP+ in metabolism

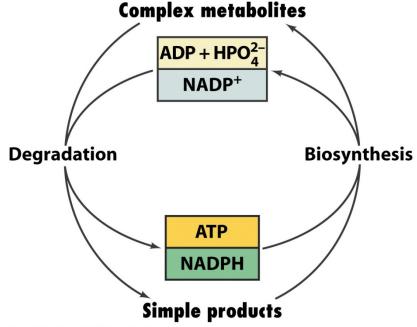


Figure 13-1 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Overview of catabolism

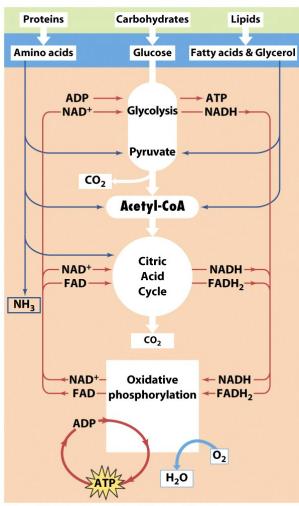
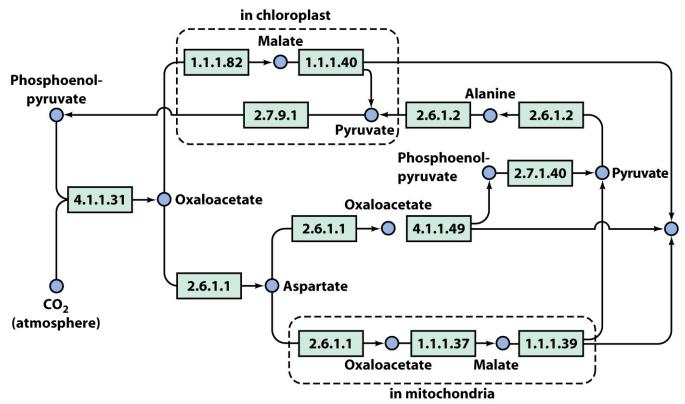


Figure 13-2 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Converge to common intermediates


Oxidation states of carbon

C-O	+1
С-Н	- 1
C-C	0

Compound	Formula	Oxidation Number
Carbon dioxide	o=c=o	4 (most oxidized)
Acetic acid	H ₃ C-COOH	3
Carbon monoxide	:C≡O:	2
Formic acid	$H-C \bigcirc O$	2
Acetone	$_{\mathrm{H_{3}C-}}^{\mathrm{C}-\mathrm{CH_{3}}}$	2
Acetaldehyde	$_{\mathrm{H_{3}C}}^{\mathrm{C}}$	1
Formaldehyde	O 	0 -1
Acetylene	HC≡ <mark>C</mark> H H	-1
Ethanol	H_3C- OH	-1
Ethene	$\overset{\text{H}}{\text{H}}$ $\text{H}_2\text{C}=\overset{\text{C}}{\overset{\text{H}}{\text{H}}}$	-2
Ethane	$_{\mathrm{H_{3}C}}^{\mathrm{H_{3}C}}$	-3
Methane	Н	-4 (least oxidized)

Box 13-1 table 1 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Mapping metabolic pathways catalyzed by enzymes

Box 13-2 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

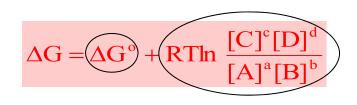
Enzyme reactions fall into 4 major types

Oxidations and reductions (oxidoreductases)
Group-transfer reactions (transferases and hydrolases)
Eliminations, isomerizations, and rearrangements (isomerases and mutases)
Reactions that make or break C-C bonds (hydrolases, lyases, and ligases)

Group of Enzyme	Reaction Catalysed	Examples
1. Oxldoreductases	Transfer of hydrogen and oxygen atoms or electrons from one substrate to another.	Dehydrogenases Oxidases
2. Transferases	Transfer of a specific group (a phosphate or methyl etc.) from one substrate to another.	Transaminase Kinases
3. Hydrolases	Hydrolysis of a substrate.	Estrases Digestive enzymes
4. Isomerases	Change of the molecular form of the substrate.	Phospho hexo isomerase, Fumarase
5. Lyases	Nonhydrolytic removal of a group or addition of a group to a substrate.	Decarboxylases Aldolases
6. Ligases (Synthetases)	Joining of two molecules by the formation of new bonds.	Citric acid synthetase

Compartmentation

Metabolic pathways occur in specific cellular locations


Table 13-1 Metabolic Functions of Eukaryotic Organelles

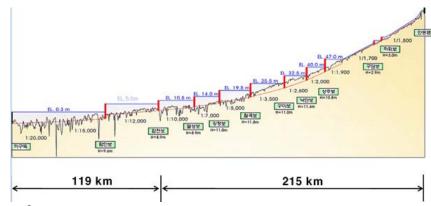
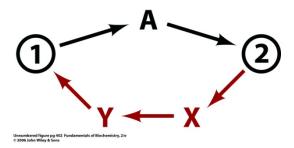

Organelle	Major functions
Mitochondrion	Citric acid cycle, oxidative phosphorylation, fatty acid oxidation, amino acid breakdown
Cytosol	Glycolysis, pentose phosphate pathway, fatty acid biosynthesis, many reactions of gluconeogenesis
Lysosomes	Enzymatic digestion of cell components and ingested matter
Nucleus	DNA replication and transcription, RNA processing
Golgi apparatus	Posttranslational processing of membrane and secretory proteins; formation of plasma membrane and secretory vesicles
Rough endoplasmic reticulum	Synthesis of membrane-bound and secretory proteins
Smooth endoplasmic reticulum	Lipid and steroid biosynthesis
Peroxisomes	Oxidative reactions catalyzed by amino acid
(glyoxysomes in	oxidases and catalase; glyoxylate cycle
plants)	reactions in plants

Table 13-1 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Metabolic pathways depends on tissues and organs liver, muscle, adipocyte isozymes: LDH

Thermodynamic considerations



near-equilibrium reaction (reversible): $\Delta G \approx 0$ depends on the relative concentrations of substrates and products

far-equilibrium reaction (irreversible): $\Delta G \ll 0$ accumulation of substrate (insufficient catalytic efficiency) controlled by allosteric effector

- 1. Metabolic pathways are irreversible: confers directionality
- 2. Every metabolic pathway has a first committed step
- 3. Catabolic and anabolic pathways differ

 $\Delta G^{o'}$ for the reaction is -20.9 kJ • mol-1 At equilibrium, $\Delta G = 0$ and $\Delta G^{o'} = -RT \ln K$

Therefore,

$$K = e^{-\Delta Go^2/RT}$$

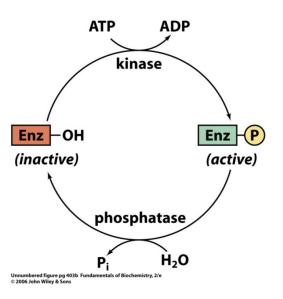
= $e^{-(-20900 \text{ kJ} \cdot \text{mol-1})/(8.3145 \text{ J} \cdot \text{K-1} \cdot \text{mol-1})(310\text{K})}$
= 3.3×10^3

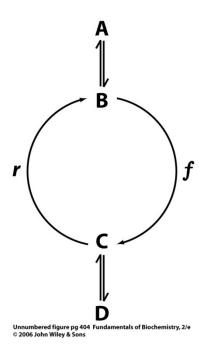
$$\Delta G = \Delta G^{\circ} + RT \ln \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$

Control of metabolic flux

Steady state & equilibrium

The flux of metabolites J = v(f) - v(r)


At equilibrium, J=0, although v(f) and v(r) may be quite large


In reactions that are far from equilibrium, v(f)>>v(r), so the flux is essentially equal to the rate of the forward reaction $(J \approx v(f))$

Flux is determined by the slowest step (rate-determining step) *** committed step

Allosteric control Covalent modification Substrate cycles Genetic control

High-energy compounds

High-energy intermediates: phosphorylated compounds, NADH A sort of free energy currency

ATP and phosphoryl group transfer: thermodynamically favored but kinetically disfavored

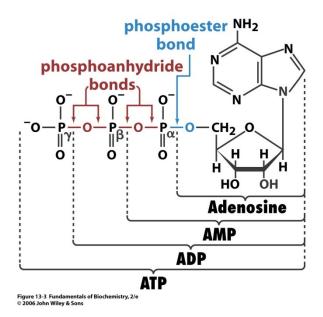


Table 13-2 Standard Free Energies of Phosphate Hydrolysis of Some Compounds of Biological Interest

Compound	$\Delta G^{\circ\prime} (\mathrm{kJ} \cdot \mathrm{mol}^{-1})$
Phosphoenolpyruvate	-61.9
1,3-Bisphosphoglycerate	-49.4
$\mathbf{ATP} \; (\to \mathbf{AMP} + \mathbf{PP}_i)$	-45.6
Acetyl phosphate	-43.1
Phosphocreatine	-43.1
$\mathbf{ATP} \; (\to \mathbf{ADP} + \mathbf{P}_i)$	-30.5
Glucose-1-phosphate	-20.9
PP_i	-19.2
Fructose-6-phosphate	-13.8
Glucose-6-phosphate	-13.8
Glycerol-3-phosphate	-9.2

Source: Mostly from Jencks, W.P., in Fasman, G.D. (Ed.), Handbook of Biochemistry and Molecular Biology (3rd ed.), Physical and Chemical Data, Vol. I, pp. 296–304, CRC Press (1976).

Table 13-2 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

What are high energy bonds (energy rich bonds)?

Resonance stabilization Electrostatic repulsion Solvation energy

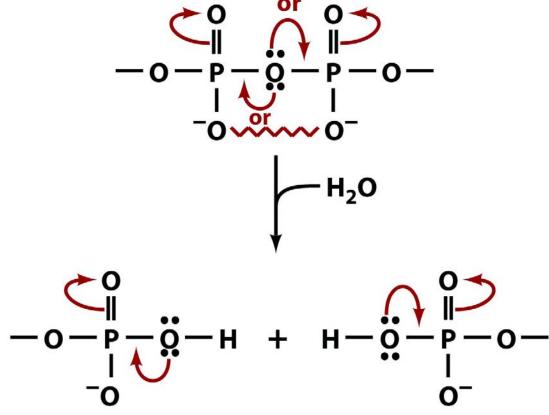


Figure 13-4 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Coupled reactions

coupling of exergonic and endergonic process Not actual process in the catalyzing enzyme ATP coupling to conformational changes

$$G' (kJ \cdot mol^{-1})$$
Endergonic
half-reaction 1 P_i + glucose \Longrightarrow glucose-6-P + H₂O +13.8

Exergonic
half-reaction 2 ATP + H₂O \Longrightarrow ADP + P_i -30.5

Overall
coupled reaction ATP + glucose \Longrightarrow ADP + glucose-6-P -16.7

Exergonic half-reaction 1
$$CH_2 = C$$
 $+$ $H_2O \Longrightarrow CH_3 - C - COO^- + P_i$ -61.9

Phosphoenolpyruvate Pyruvate

Endergonic half-reaction 2 $ADP + P_i \Longrightarrow ATP + H_2O$ $+30.5$

Overall coupled reaction $CH_2 = C$ $+$ $ADP \Longrightarrow CH_2 - C - COO^- + ATP$ -31.4

Figure 13-5 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Pyrophosphate cleavage

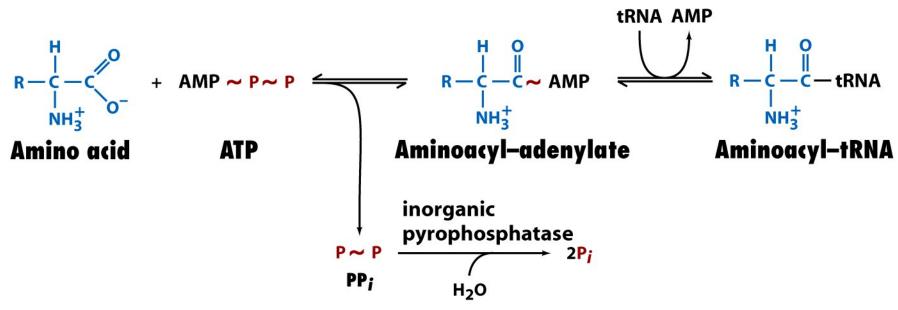


Figure 13-6 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Other phosphorylated compounds

ATP is continually being hydrolyzed and regenerated metabolic half-life: from seconds to minutes

Substrate level phosphorylation Oxidative phosphorylation Photophosphorylation

Interconversion of nucleoside triphosphates Kinases & phosphatases

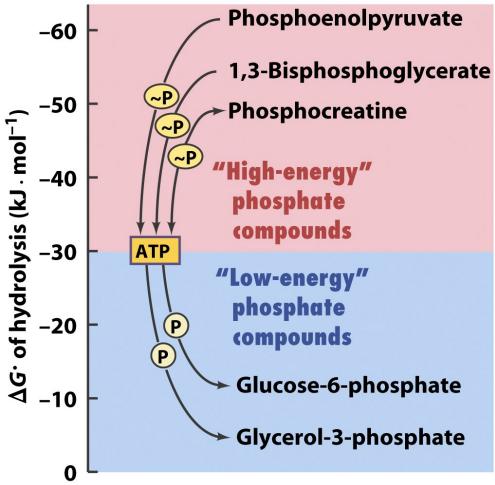
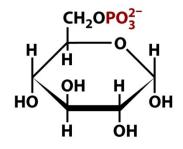



Figure 13-7 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

$$\begin{array}{c}
O \\
\parallel \\
CH_3 - C \sim OPO_3^{2^-}
\end{array}$$

Acetyl phosphate 1,3-Bisphosphoglycerate

Unnumbered figure pg 411a Fundamentals of Biochemistry, 2/6 © 2006 John Wiley & Sons

α -D-Glucose-6-phosphate

L-Glycerol-3-phosphate

Unnumbered figure pg 411b Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

$$R = CH_2 - CO_2^-$$
; $X = CH_3$ Phosphocreatine

$$R = CH_2 - CH_$$

Phosphoarginine

Thioester: primitive compound

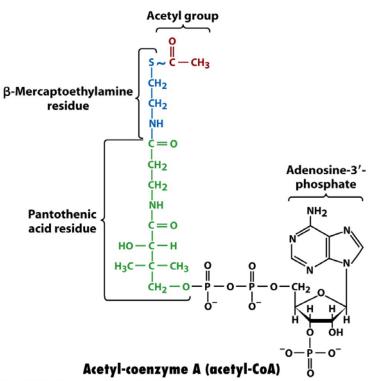
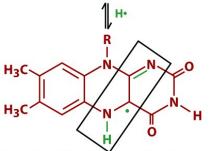
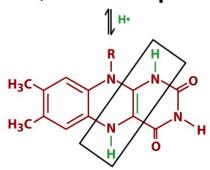


Figure 13-9 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons


Unnumbered figure pg 411c Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

Oxidation-reduction reactions


One electron transfer Two electron transfer Reversible reaction

© 2006 John Wiley & Sons

Flavin adenine dinucleotide (FAD) (oxidized or quinone form)

FADH · (radical or semiquinone form)

FADH₂ (reduced or hydroquinone form)

Figure 13-12 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

The Nernst equation

Oxidation-reduction reactions: electron transfer reaction

Electron donor & acceptor

Electrochemical cells:

redox pair (analogous to acid-base pair)

a half-reactions: electron donor and its conjugate electron acceptor

$$E = E_0 - \left(\frac{RT}{zF}\right) \ln\left(\frac{[red]}{[ox]}\right)$$
$$\Delta G^{o'} = -nF\Delta E^{o'}$$

$$\Delta G^{o'} = - nF\Delta E^{o'}$$

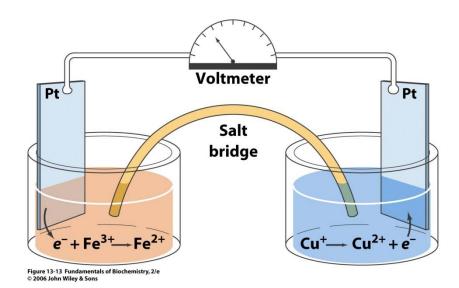


Table 13-3 Standard Reduction Potentials of Some Biochemically Important Half-Reactions

Half-Reaction	€°′ (V)
$\frac{1}{2}$ O ₂ + 2 H ⁺ + 2 $e^- \Longrightarrow$ H ₂ O	0.815
$SO_4^{2-} + 2 H^+ + 2 e^- \Longrightarrow SO_3^{2-} + H_2O$	0.48
$NO_3^- + 2 H^+ + 2 e^- \Longrightarrow NO_2^- + H_2O$	0.42
Cytochrome a_3 (Fe ³⁺) + $e^- \rightleftharpoons$ cytochrome a_3 (Fe ²⁺)	0.385
$O_2(g) + 2 H^+ + 2 e^- \Longrightarrow H_2O_2$	0.295
Cytochrome $a (Fe^{3+}) + e^{-} \Longrightarrow \text{cytochrome } a (Fe^{2+})$	0.29
Cytochrome c (Fe ³⁺) + $e^- \Longrightarrow$ cytochrome c (Fe ²⁺)	0.235
Cytochrome c_1 (Fe ³⁺) + $e^- \rightleftharpoons$ cytochrome c_1 (Fe ²⁺)	0.22
Cytochrome b (Fe ³⁺) + $e^- \rightleftharpoons$ cytochrome b (Fe ²⁺) (mitochondrial)	0.077
Ubiquinone + 2 H ⁺ + 2 $e^- \rightleftharpoons$ ubiquinol	0.045
Fumarate $^- + 2 H^+ + 2 e^- \Longrightarrow succinate^-$	0.031
$FAD + 2 H^+ + 2 e^- \Longrightarrow FADH_2$ (in flavoproteins)	~0.
Oxaloacetate $^- + 2 H^+ + 2 e^- \Longrightarrow malate^-$	-0.166
Pyruvate ⁻ + 2 H ⁺ + 2 $e^- \rightleftharpoons$ lactate ⁻	-0.185
Acetaldehyde + 2 H ⁺ + 2 $e^- \rightleftharpoons$ ethanol	-0.197
$FAD + 2H^+ + 2e^- \Longrightarrow FADH_2$ (free coenzyme)	-0.219
$S + 2 H^+ + 2 e^- \Longrightarrow H_2 S$	-0.23
Lipoic acid + $2 \text{ H}^+ + 2 e^- \iff$ dihydrolipoic acid	-0.29
$NAD^{+} + H^{+} + 2 e^{-} \Longrightarrow NADH$	-0.315
$NADP^+ + H^+ + 2 e^- \Longrightarrow NADPH$	-0.320
Cystine + 2 H ⁺ + 2 $e^- \rightleftharpoons$ 2 cysteine	-0.340
Acetoacetate ⁻ + 2 H ⁺ + 2 $e^- \iff \beta$ -hydroxybutyrate ⁻	-0.346
$H^+ + e^- \Longrightarrow \frac{1}{2} H_2$	-0.421
Acetate ⁻ + 3 H ⁺ + 2 $e^- \rightleftharpoons$ acetaldehyde + H ₂ O	-0.581

Source: Mostly from Loach, P.A., In Fasman, G.D. (Ed.), Handbook of Biochemistry and Molecular Biology (3rd ed.), Physical and Chemical Data, Vol. I, pp. 123–130, CRC Press (1976).

Table 13-3 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

$$\frac{\frac{1}{2}O_2 + 2H^+ + 2e^-}{NADH \longrightarrow NAD^+ + H^+ + 2e^-} \qquad E^{o'} = + 0.82 \text{ V}$$

$$\frac{E^{o'} = + 0.82 \text{ V}}{E^{o'} = + 0.32 \text{ V}}$$

$$\frac{1}{2}O_2 + 2H^+ + NADH \longrightarrow H_2O + NAD^+ + H^+ \qquad \Delta E^{o'} = + 1.14 \text{ V}$$

$$\Delta G^{o'} = -(2)(23.06)(1.14) = -52.6 \text{ kcal/mol}$$

Experimental approaches to the study of metabolism

Understanding the sequence, mechanism, and regulation

```
Approaches
tracing metabolic fates
perturbing the system
metabolic inhibitors, genetic defects, genetic manipulation
DNA microarrays (DNA chips): transcriptomics
proteomics
```

13C NMR spectrum of rat liver

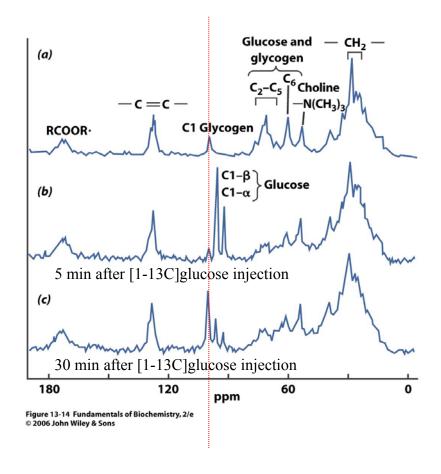


Figure 13-15 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

PCR amplified yeast cDNAs

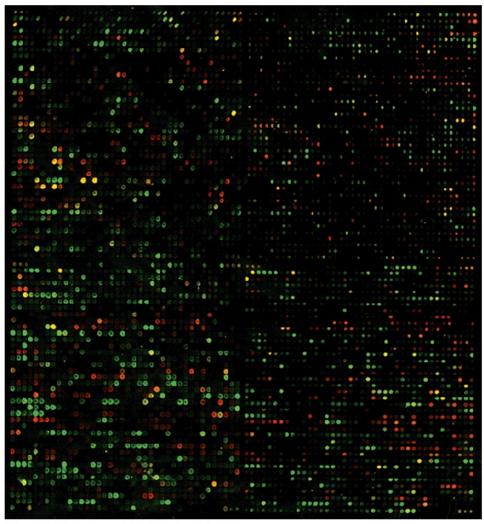


Figure 13-16 Fundamentals of Biochemistry, 2/e

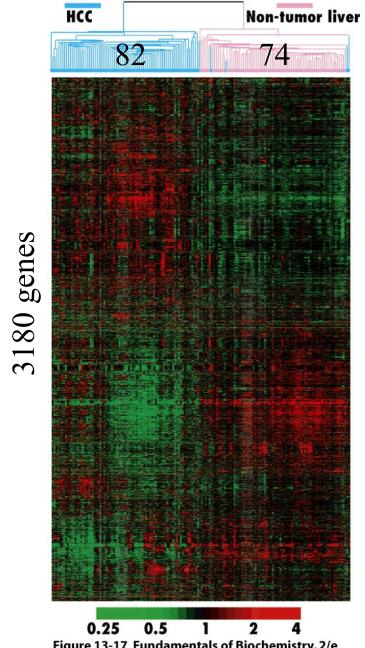


Figure 13-17 Fundamentals of Biochemistry, 2/e