
SPI
Serial Peripheral Interface

Allows high-speed synchronous data transfer between the device and peripheral units.

November 6, 2017 Biomedical Engineering, Inje University 1

Serial Peripheral Interface Bus

• A synchronous serial data link standard.

• Named by Motorola that operates in full duplex mode.

• Devices communicate in master/slave mode.

• Master device initiates the data frame.

• Multiple slave devices are allowed with individual slave select (chip select) lines.

• Sometimes SPI is called a "four-wire" serial bus.

November 6, 2017 Biomedical Engineering, Inje University 2

SPI: Interface

• The SPI bus specifies four logic signals:

 SCLK: Serial Clock (output from master)

 MOSI; SIMO: Master Output, Slave Input (output from master)

 MISO; SOMI: Master Input, Slave Output (output from slave)

 SS: Slave Select (active low, output from master)

3

November 6, 2017 Biomedical Engineering, Inje University

• Alternative naming conventions are also widely used:

 SCK, CLK: Serial Clock (output from master)

 SDI, DI, DIN, SI: Serial Data In; Data In, Serial In

 SDO, DO, DOUT, SO: Serial Data Out; Data Out, Serial Out

 nCS, CS, CSB, CSN, nSS, STE: Chip Select, Slave Transmit Enable (active low, output from master)

SPI: Interface

4

November 6, 2017 Biomedical Engineering, Inje University

SPI: Data Transmission

5

November 6, 2017 Biomedical Engineering, Inje University

SPI: Data Transmission (Example)

6

November 6, 2017 Biomedical Engineering, Inje University

1. Master configures the clock

 Frequency less than or equal to the maximum frequency the slave device supports.

 Commonly in the range of 1–70 MHz.

2. Master pulls the chip select low for the desired chip.

3. If a waiting period is required (such as for analog-to-digital conversion) then the

master must wait for at least that period of time before starting to issue clock cycles.

SPI: Data Transmission (1)

November 6, 2017 Biomedical Engineering, Inje University 7

4. During each SPI clock cycle, a full duplex data transmission occurs:

 Master sends a bit on the MOSI line; the slave reads it from that same line

 Slave sends a bit on the MISO line; the master reads it from that same line

• Not all transmissions require all four of these operations to be meaningful but they do

happen.

SPI: Data Transmission (2)

November 6, 2017 Biomedical Engineering, Inje University 8

• Transmissions normally involve two shift registers of some given word size, such as

eight bits

 one in the master and one in the slave

 they are connected in a ring.

• Data are usually shifted out with the most significant bit first, while shifting a new

least significant bit into the same register.

• After that register has been shifted out, the master and slave have exchanged

register values.

SPI: Data Transmission (3)

November 6, 2017 Biomedical Engineering, Inje University 9

• Then each device takes that value and does something with it, such as writing it to

memory.

• If there are more data to exchange, the shift registers are loaded with new data and

the process repeats.

• Transmissions may involve any number of clock cycles.

• When there are no more data to be transmitted, the master stops toggling its clock.

Normally, it then deselects the slave.

SPI: Data Transmission (4)

November 6, 2017 Biomedical Engineering, Inje University 10

• Transmission word sizes

 8-bit words

 16-bit words for touch screen controllers or audio codecs,

 12-bit words for many DACs or ADCs.

• Non-selected slave on the bus:

 must disregard the input clock and MOSI signals

 must not drive MISO.

• The master must select only one slave at a time.

SPI: Data Transmission (5)

November 6, 2017 Biomedical Engineering, Inje University 11

SPI: Clock Polarity and Phase (1)

November 6, 2017 Biomedical Engineering, Inje University 12

• At CPOL=0 the base value of the clock is zero

 For CPHA=0, data are captured on the clock's rising edge (low→high transition) and data are

propagated on a falling edge (high→low clock transition).

 For CPHA=1, data are captured on the clock's falling edge and data are propagated on a rising edge.

• At CPOL=1 the base value of the clock is one (inversion of CPOL=0)

 For CPHA=0, data are captured on clock's falling edge and data are propagated on a rising edge.

 For CPHA=1, data are captured on clock's rising edge and data are propagated on a falling edge.

SPI: Clock Polarity and Phase (2)

November 6, 2017 Biomedical Engineering, Inje University 13

• Mode numbers

• The combinations of polarity and phases are often referred to as modes which are

commonly numbered according to the following convention, with CPOL as the high

order bit and CPHA as the low order bit:

Mode CPOL CPHA

0 0 0

1 0 1

2 1 0

3 1 1

SPI: Clock Polarity and Phase (3)

November 6, 2017 Biomedical Engineering, Inje University 14

Independent Slave SPI Configuration

November 6, 2017 Biomedical Engineering, Inje University 15

Daisy Chain SPI Configuration

November 6, 2017 Biomedical Engineering, Inje University 16

ATmega328PB SPI Features

• Full-duplex, Three-wire Synchronous Data Transfer

• Master or Slave Operation

• LSB First or MSB First Data Transfer

• Seven Programmable Bit Rates

• End of Transmission Interrupt Flag

• Write Collision Flag Protection

• Wake-up from Idle Mode

• Double Speed (CK/2) Master SPI Mode

• Two SPIs are available - SPI0 and SPI1 (ATmega328PB only)

November 6, 2017 Biomedical Engineering, Inje University 17

Typical SPI Interconnection

November 6, 2017 Biomedical Engineering, Inje University 18

ATmega328PB SPI Block Diagram

November 6, 2017 Biomedical Engineering, Inje University 19

ATmega328PB SPI Master-Slave Interconnection

November 6, 2017 Biomedical Engineering, Inje University 20

8-bit Shift Register 8-bit Shift Register

SPI Clock Generator

MASTER SLAVE

MISO MISO

MOSI MOSI

SCK SCK

SSGPIO

ATmega328PB SPI Master-Slave Data Exchange

• The SPI Master initiates the communication cycle by pulling low the Slave Select, SS,

pin of the desired Slave.

• Master and Slave prepare the data to be sent in their respective shift Registers, and

the Master generates the required clock pulses on the SCK line to interchange data.

• Data is always shifted from Master to Slave on the Master Out – Slave In, MOSI, line,

and from Slave to Master on the Master In – Slave Out, MISO, line.

• After each data packet, the Master will synchronize the Slave by pulling high the Slave

Select, SS, line.

November 6, 2017 Biomedical Engineering, Inje University 21

SS line at ATmega328PB SPI Master

• When configured as a Master, the SPI interface has no automatic control of the SS line.

 This must be handled by user software before communication can start.

• When this is done, writing a byte to the SPI Data Register (SPDR) starts the SPI clock generator, and the

hardware shifts the eight bits into the Slave.

• After shifting one byte, the SPI clock generator stops, setting the End of Transmission Flag (SPIF).

 If the SPI Interrupt Enable bit (SPIE) in the SPCR Register is set, an interrupt is requested.

• The Master may continue to shift the next byte by writing it into SPDR, or signal the end of packet by pulling

high the Slave Select (SS) line.

• The last incoming byte will be kept in the SPI Data Register (SPDR) for later use.

November 6, 2017 Biomedical Engineering, Inje University 22

SS line at ATmega328PB SPI Slave

• When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated as long as the SS pin

is driven high.

• In this state, software may update the contents of the SPI Data Register (SPDR), but the data will not be

shifted out by incoming clock pulses on the SCK pin until the SS pin is driven low.

• As one byte has been completely shifted, the End of Transmission Flag (SPIF) is set.

 If the SPI Interrupt Enable bit (SPIE) in the SPCR Register is set, an interrupt is requested.

• The Slave may continue to place new data to be sent into SPDR before reading the incoming data.

• The last incoming byte will be kept in the SPI Data Register (SPDR) for later use.

November 6, 2017 Biomedical Engineering, Inje University 23

ATmega328PB SPI Transmit and Receive Buffering

• The system is single buffered in the transmit direction and double buffered in the receive direction.

• This means that bytes to be transmitted cannot be written to the SPI Data Register (SPDR) before the

entire shift cycle is completed.

• When receiving data, however, a received character must be read from the SPI Data Register(SPDR)

before the next character has been completely shifted in. Otherwise, the first byte is lost.

November 6, 2017 Biomedical Engineering, Inje University 24

Sampling of Receiving Data in Slave Mode

• In SPI Slave mode, the control logic will sample the incoming signal of the SCK pin.

• To ensure correct sampling of the clock signal, the minimum low and high periods should be longer

than two CPU clock cycles.

November 6, 2017 Biomedical Engineering, Inje University 25

ATmega328PB Data Direction of MOSI, MISO, SCK, and SS Pins

November 6, 2017 Biomedical Engineering, Inje University 26

ATmega328PB Data Direction of MOSI, MISO, SCK, and SS Pins (Master)

• When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is overridden

according to the table below.

Pin
Direction,
Master SPI

MOSI User Defined

MISO Input

SCK User Defined

SS User Defined

void SPI0_MasterInit(void)
{

DDRB = (1 << DDB5) // Set SCK to OUTPUT mode
| (1 << DDB3) // Set MOSI to OUTPUT mode
| (1 << DDB2); // Set SS to OUTPUT mode

SPCR0 = (1 << SPE0) // Enable SPI0
| (1 << MSTR0) // Enable Master
| (1 << SPR00); // Set clock rate to fosc/16

}

November 6, 2017 Biomedical Engineering, Inje University 27

ATmega328PB Example Codes for SPI Master

void SPI0_MasterInit(void)
{

// Set SCK, MOSI and nSS output
DDRB = (1 << DDB5) | (1 << DDB3) | (1 << DDB2);

// Enable SPI, Master, set clock rate fosc/16
SPCR0 = (1 << SPE0) | (1 << MSTR0) | (1 << SPR00);

}

void SPI0_MasterTransmit(char cData)
{

// Start transmission
SPDR0 = cData;

// Wait for transmission complete
while ((SPSR0 & (1 << SPIF0)) == 0)

;
} November 6, 2017 Biomedical Engineering, Inje University 28

ATmega328PB Data Direction of MOSI, MISO, SCK, and SS Pins (Slave)

• When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is overridden

according to the table below.

Pin Direction, Slave SPI

MOSI Input

MISO User Defined

SCK Input

SS Input

void SPI0_SlaveInit(void)
{

// Set MISO output
DDRB = (1 << DDB4);

// Enable SPI0
SPCR0 = (1 << SPE0);

}

November 6, 2017 Biomedical Engineering, Inje University 29

ATmega328PB Example Codes for SPI Slave

void SPI0_SlaveInit(void)
{

// Set MISO output
DDRB = (1 << DDB4);

// Enable SPI0
SPCR0 = (1 << SPE0);

}

char SPI0_SlaveReceive(void)
{

// Wait for reception complete
while ((SPSR0 & (1 << SPIF0)) == 0);

// Return received data
return SPDR0;

}
November 6, 2017 Biomedical Engineering, Inje University 30

ATmega328PB Data Modes (1)

• There are four combinations of SCK phase and polarity with respect to serial data, which are

determined by control bits CPHA and CPOL.

• Data bits are shifted out and latched in on opposite edges of the SCK signal, ensuring sufficient time for

data signals to stabilize.

• The following table, summarizes SPCR.CPOL and SPCR.CPHA settings.

SPI Modes Conditions Leading Edge Trailing Edge

0 CPOL=0, CPHA=0 Sample on Rising Edge Setup on Falling Edge

1 CPOL=0, CPHA=1 Setup on Rising Edge Sample on Falling Edge

2 CPOL=1, CPHA=0 Sample on Falling Edge Setup on Rising Edge

3 CPOL=1, CPHA=1 Setup on Falling Edge Sample on Rising Edge

November 6, 2017 Biomedical Engineering, Inje University 31

ATmega328PB Data Modes (2)

SPI Modes Conditions Leading Edge Trailing Edge

0 CPOL=0, CPHA=0 Sample on Rising Edge Setup on Falling Edge

2 CPOL=1, CPHA=0 Sample on Falling Edge Setup on Rising Edge

November 6, 2017 Biomedical Engineering, Inje University 32

ATmega328PB Data Modes (3)

SPI Modes Conditions Leading Edge Trailing Edge

1 CPOL=0, CPHA=1 Setup on Rising Edge Sample on Falling Edge

3 CPOL=1, CPHA=1 Setup on Falling Edge Sample on Rising Edge

November 6, 2017 Biomedical Engineering, Inje University 33

ATmega328PB SPI0 Operation

November 6, 2017 Biomedical Engineering, Inje University 34

ATmega328PB SPI0 Example I (1)

MOSI MOSI

MISO MISO

SCKSCK

SS SS

SPI
MASTER

SPI
SLAVE

ATmega328PB ATmega328PB

• Specifications:

 SCK: 1 MHz

 MSB first

 Mode 3

• MASTER sends SLAVE a byte data 0x55

and stores the received data to the

variable rx_data.

• SLAVE sends MASTER a byte data 0xAA

and stores the received data to the

variable rx_data.

• Polling method

November 6, 2017 Biomedical Engineering, Inje University 35

ATmega328PB SPI0 Example I (2)

SPIE0 SPE0 DORD0 MSTR0 CPOL0 CPHA0 SPR01 SPR00

0 1 0 1 1 1 0 1

1 MHz, MSB first, Mode 3

SPCR0

SPI0 Clock Rate Select
SPI2X0:SPR01:SPR00=001 (Fosc/16)

Clock0 Phase
CPHA0=1

Clock0 Polarity
CPOL0=1

Data0 Order
DORD0=0 (MSB first)

SPI0 Interrupt Enable
SPIE0=0 (Interrupt disable)

SPI0 Enable
SPE0=1 (Enable)

Master/Slave0 Select
MSTR0=1 (Master)

CPOL0:CPHA0=11(Mode 3)

November 6, 2017 Biomedical Engineering, Inje University 36

ATmega328PB SPI0 Example I (3)

SPIF0 WCOL0 SPI2X0

0/1 1 0

1 MHz, MSB first, Mode 3

SPSR0

SPI0 Clock Rate Select
SPI2X0:SPR01:SPR00=001 (Fosc/16)

SPI0 Interrupt Flag
SPIE0=0 (Transfer is incomplete)
SPIE0=1 (Transfer is complete)

SPI0 Write Collision Flag
WCOL0=1 (SPDR is written during a data transfer)

November 6, 2017 Biomedical Engineering, Inje University 37

ATmega328PB SPI0 Example I(Master)(4)

TX completed?

Set SS0 HIGH

Start

Write 0x55 to SPDR0

Initialize SPCR0 and SPSR0

Set SS0 HIGH

Initialize DDRB for SCK0, MOSI0, SS0

Y

N

Set SS0 LOW

End

Master

• Specifications:

 SCK: 1 MHz

 MSB first

 Mode 3

• MASTER sends SLAVE a byte data 0x55

and stores the received data to the

variable rx_data.

• SLAVE sends MASTER a byte data 0xAA

and stores the received data to the

variable rx_data.

• Polling method

November 6, 2017 Biomedical Engineering, Inje University 38

ATmega328PB SPI0 Example I(Slave)(5)

RX completed?

Start

Write 0xAA to SPDR0

Initialize SPCR0

Initialize DDRB for MISO0

Y

N

End

Store received data to rx_data

Slave

• Specifications:

 SCK: 1 MHz

 MSB first

 Mode 3

• MASTER sends SLAVE a byte data 0x55

and stores the received data to the

variable rx_data.

• SLAVE sends MASTER a byte data 0xAA

and stores the received data to the

variable rx_data.

• Polling method

November 6, 2017 Biomedical Engineering, Inje University 39

ATmega328PB SPI0 Example I(Master)(6)

TX completed?

Set SS0 HIGH

Start

Write 0x55 to SPDR0

Initialize SPCR0 and SPSR0

Set SS0 HIGH

Initialize DDRB for SCK0, MOSI0, SS0

Y

N

Set SS0 LOW

End

#include <avr/io.h>

int main(void)
{

char rx_data;

// Init pins for SPI0
DDRB = (1 << DDRB5) // Set PB5 as OUTPUT for SCK0

| (1 << DDRB3) // Set PB3 as OUTPUT for MOSI0
| (1 << DDRB2); // Set PB2 as OUTPUT for SS0

// Set SS0 HIGH
PORTB |= (1 << PORTB2);

// Init SPI0 as a MASTER
SPCR0 = (1 << SPE) // Enable SPI0

| (1 << MSTR) // Select MASTER
| (1 << CPOL) // CPOL = 1 (Mode 3)
| (1 << CPHA) // CPHA = 1 (Mode 3)
| (1 << SPR0); // SPI0 clock = 16MHz/16 = 1MHz.

PORTB &= ~(1 << PORTB2); // Set SS0 LOW

SPDR0 = 0x55; // Send a byte data
while (!(SPSR0 & (1 << SPIF))); // Wait for end of TX

PORTB |= (1 << PORTB2); // Set SS0 HIGH

rx_data = SPDR0; // Store the received data

while (1)
{ }

}

November 6, 2017 Biomedical Engineering, Inje University 40

ATmega328PB SPI0 Example I(Slave)(7)

RX completed?

Start

Write 0xAA to SPDR0

Initialize SPCR0

Initialize DDRB for MISO0

Y

N

End

Store received data to rx_data

#include <avr/io.h>

int main(void)
{

char rx_data;

// Init pins for SPI0
DDRB = (1 << DDRB4); // Set PB4 as OUTPUT for MISO0

// Init SPI0 as a MASTER
SPCR0 = (1 << SPE) // Enable SPI0

| (1 << CPOL) // CPOL = 1 (Mode 3)
| (1 << CPHA); // CPHA = 1 (Mode 3)

SPDR0 = 0xAA; // Load a byte data
while (!(SPSR0 & (1 << SPIF))); // Wait for end of reception

rx_data = SPDR0; // Store the received data

while (1)
{ }

}

November 6, 2017 Biomedical Engineering, Inje University 41

ATmega328PB SPI0 Example II (1)

• ADXL345: 3-axis accelerometer

• Interface ADXL345 using SPI0

• Initialize ADXL345

• Read data for X-, Y-, and Z-axis from ADXL345 and transmit the data through UART0.

• Polling method

November 6, 2017 Biomedical Engineering, Inje University 42

ATmega328PB SPI0 Example II (2)

Interface ADXL345 using SPI0

ATmega328PB ADXL345

MOSI0

MISO0

SCK0

SS0

PB4

PB3

PB5

PB2

SCK(SCL)

SDO

SDI(SDA)

CS

November 6, 2017 Biomedical Engineering, Inje University 43

ATmega328PB SPI0 Example II (3)

Read ADXL345 ID

Register Address Name Type Reset Value Description

0x00 DEVID R 11100101 Device ID

November 6, 2017 Biomedical Engineering, Inje University 44

ATmega328PB SPI0 Example II (4)

Register
Address

Name Type Set Value Description

0x2C BW_RATE R/W 00001010
BW=50Hz

(Output Data Rate = 100Hz)

0x31 DATA_FORMAT R/W 00001000
Full Resolution
+/-2g, 4mg/LSB

0x2D POWER_CTL R/W 00001000 Enter Measurement Mode

Initialize ADXL345

November 6, 2017 Biomedical Engineering, Inje University 45

ATmega328PB SPI0 Example II (5)

Read ADXL345 Status (Address: 0x30, Read Only)

Bit 7 of INT_SOURCE Register (Address 0x30)

1: Data is available

0: Data is not available

November 6, 2017 Biomedical Engineering, Inje University 46

ATmega328PB SPI0 Example II (6)

Read Data (X-, Y-, Z-Axis) from ADXL345

Register Address Name Type Reset Value Description

0x32 DATAX0 R 00000000 Low Byte of X-Axis Data

0x33 DATAX1 R 00000000 High Byte of X-Axis Data

0x34 DATAY0 R 00000000 Low Byte of Y-Axis Data

0x35 DATAY1 R 00000000 High Byte of Y-Axis Data

0x36 DATAZ0 R 00000000 Low Byte of Z-Axis Data

0x37 DATAZ1 R 00000000 High Byte of Z-Axis Data

• The output data is two’s complement format.

• It is recommended that a multiple-byte read of all registers be performed to
prevent a change in data between reads of sequential registers.

November 6, 2017 Biomedical Engineering, Inje University 47

ATmega328PB SPI0 Example II (7)

#include <avr/io.h>
#include <stdio.h>

int main(void)
{

// Init pins for SPI0 (DDRB)

// Set ADXL CS signal to High (PB2)

// Init SPI0 as a MASTER (SPCR)

// Read ADXL345 ID and display it

// Set ADXL345 BW_RATE

// Set ADXL345 DATA_FORMAT
// Full Resolution, +/-2g (4mg/LSB)

// Enter MEASUREMENT mode

while (1)
{

// Wait until new data is available

// Read 3-axis data with multiple-byte read format

// Display 3-axis data

}
}

// Refer to Fig. 37 of ADXL345 Datasheet
void write_adxl345(uint8_t reg_addr, uint8_t data)
{

}

uint8_t read_adxl345_reg(uint8_t reg_addr)
{

}

void read_adxl345_reg_multi(uint8_t num, uint8_t
start_addr, uint8_t *buff)
{

}

Complete the code by yourself.

November 6, 2017 Biomedical Engineering, Inje University 48

Biomedical Engineering, Inje University 49

SPI
END

November 6, 2017

