
Atmega328PB
Instruction Set and Programming

Rev. 1.1 Biomedical Engineering, Inje University 1

Objectives

• Understanding ATmega328PB Instruction Set

• How to make a program using assembly language

Biomedical Engineering, Inje University 2

Assembly Language Programming

Biomedical Engineering, Inje University 3

High-Level Language
(C, C++, Pascal, Fortran)

Assembly Language

Machine Instruction

Hardware

x = 0x12
y = 0x34
z = x + y;

LDI R25,0x12
LDI R24,0x34
ADD R25,R24
MOV R26,R25

11100001 10010010
11100011 10000100
00001111 10011000
00101111 10101001

Compile

Assemble

ATmega328PB Instruction Set (1)

Biomedical Engineering, Inje University 4

• The Assembler is not case sensitive.

• The operands have the following forms:

Rd: R0-R31 or R16-R31 (depending on instruction)
Rr: R0-R31
b: Constant (0-7), can be a constant expression
s: Constant (0-7), can be a constant expression
P: Constant (0-31/63), can be a constant expression
K: Constant (0-255), can be a constant expression
k: Constant, value range depending on instruction.

Can be a constant expression.
q: Constant (0-63), can be a constant expression

ATmega328PB Instruction Set (2)

Biomedical Engineering, Inje University 5

Mnemonics Operands Description Operation Flags
No. of
Clock

ARITHMETIC AND LOGIC INSTRUCTIONS
ADD Rd, Rr Add without Carry Rd ← Rd + Rr Z,C,N,V,H 1
ADC Rd, Rr Add with Carry Rd ← Rd + Rr + C Z,C,N,V,H 1
ADIW Rd, K Add Immediate to Word Rd+1:Rd ← Rd+1:Rd + K Z,C,N,V 2
SUB Rd, Rr Subtract without Carry Rd ← Rd - Rr Z,C,N,V,H 1
SUBI Rd, K Subtract Immediate Rd ← Rd - K Z,C,N,V,H 1
SBC Rd, Rr Subtract with Carry Rd ← Rd - Rr - C Z,C,N,V,H 1
SBCI Rd, K Subtract Immediate with Carry Rd ← Rd - K - C Z,C,N,V,H 1
SBIW Rd, K Subtract Immediate from Word Rd+1:Rd ← Rd+1:Rd - K Z,C,N,V 2
AND Rd, Rr Logical AND Rd ← Rd ● Rr Z,N,V 1
ANDI Rd, K Logical AND with Immediate Rd ← Rd	● K Z,N,V 1
OR Rd, Rr Logical OR Rd ← Rd v Rr Z,N,V 1
ORI Rd, K Logical OR with Immediate Rd ← Rd v K Z,N,V 1

ATmega328PB Instruction Set (3)

Biomedical Engineering, Inje University 6

Mnemonics Operands Description Operation Flags
No. of
Clock

ARITHMETIC AND LOGIC INSTRUCTIONS

EOR Rd, Rr Exclusive OR Rd ← Rd ⨁ Rr Z,N,V 1

COM Rd One's Complement Rd ← $FF – Rd Z,C,N,V 1

NEG Rd Two's Complement Rd ← $00 – Rd Z,C,N,V,H 1

SBR Rd,K Set Bit(s) in Register Rd ← Rd v K Z,N,V 1

CBR Rd,K Clear Bit(s) in Register Rd ← Rd ● ($FFh - K) Z,N,V 1

INC Rd Increment Rd ← Rd + 1 Z,N,V 1

DEC Rd Decrement Rd ← Rd – 1 Z,N,V 1

TST Rd Test for Zero or Minus Rd ← Rd ● Rd Z,N,V 1

CLR Rd Clear Register Rd ← Rd ⨁ Rd Z,N,V 1

SER Rd Set Register Rd ← $FF None 1

MUL Rd,Rr Multiply Unsigned R1, R0 ← Rd × Rr C 2

ATmega328PB Instruction Set (4)

Biomedical Engineering, Inje University 7

Mnemonics Operands Description Operation Flags
No. of
Clock

BRANCH INSTRUCTIONS
RJMP k Relative Jump PC ← PC + k + 1 None 2
IJMP Indirect Jump to (Z) PC ← Z None 2
JMP k Jump PC ← k None 3
RCALL k Relative Call Subroutine PC ← PC + k + 1 None 3
ICALL Indirect Call to (Z) PC ← Z None 3
CALL k Call Subroutine PC ← k None 4
RET Subroutine Return PC ← STACK None 4
RETI Interrupt Return PC ← STACK I 4
CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC ← PC + 2 or 3 None 1 / 2 / 3
CP Rd,Rr Compare Rd - Rr Z,C,N,V,H 1
CPC Rd,Rr Compare with Carry Rd - Rr - C Z,C,N,V,H 1
CPI Rd,K Compare with Immediate Rd - K Z,C,N,V,H 1
SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None 1 / 2 / 3
SBRS Rr, b Skip if Bit in Register Set if (Rr(b)=1) PC ← PC + 2 or 3 None 1 / 2 / 3
SBIC P,b Skip if Bit in I/O Register Cleared if(I/O(P,b)=0) PC ← PC + 2 or 3 None 1 / 2 / 3
SBIS P,b Skip if Bit in I/O Register Set if(I/O(P,b)=1) PC ← PC + 2 or 3 None 1 / 2 / 3
BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC ← PC + k + 1 None 1 / 2
BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC ← PC + k + 1 None 1 / 2

ATmega328PB Instruction Set (5)

Biomedical Engineering, Inje University 8

Mnemonics Operands Description Operation Flags
No. of
Clock

BRANCH INSTRUCTIONS
BREQ k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1 / 2
BRNE k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1 / 2
BRCS k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1 / 2
BRCC k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1 / 2
BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1 / 2
BRLO k Branch if Lower if (C = 1) then PC ← PC + k + 1 None 1 / 2
BRMI k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1 / 2
BRPL k Branch if Plus if (N = 0) then PC ← PC + k + 1 None 1 / 2
BRGE k Branch if Greater or Equal, Signed if (N ⨁ V= 0) then PC ← PC+ k + 1 None 1 / 2
BRLT k Branch if Less Than, Signed if (N ⨁ V= 1) then PC ← PC + k + 1 None 1 / 2
BRHS k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None 1 / 2
BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None 1 / 2
BRTS k Branch if T Flag Set if (T = 1) then PC ← PC + k + 1 None 1 / 2
BRTC k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None 1 / 2
BRVS k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None 1 / 2
BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None 1 / 2
BRIE k Branch if Interrupt Enabled if (I = 1) then PC ← PC + k + 1 None 1 / 2
BRID k Branch if Interrupt Disabled if (I = 0) then PC ← PC + k + 1 None 1 / 2

ATmega328PB Instruction Set (6)

Biomedical Engineering, Inje University 9

Mnemonics Operands Description Operation Flags
No. of
Clock

DATA TRANSFER INSTRUCTIONS
MOV Rd, Rr Copy Register Rd ← Rr None 1
LDI Rd, K Load Immediate Rd ← K None 1
LDS Rd, k Load Direct from SRAM Rd ← (k) None 3
LD Rd, X Load Indirect Rd ← (X) None 2
LD Rd, X+ Load Indirect and Post-Increment Rd ← (X), X ← X + 1 None 2
LD Rd, -X Load Indirect and Pre-Decrement X ← X - 1, Rd ← (X) None 2
LD Rd, Y Load Indirect Rd ← (Y) None 2
LD Rd, Y+ Load Indirect and Post-Increment Rd ← (Y), Y ← Y + 1 None 2
LD Rd, -Y Load Indirect and Pre-Decrement Y ← Y - 1, Rd ← (Y) None 2
LDD Rd,Y+q Load Indirect with Displacement Rd ← (Y + q) None 2
LD Rd, Z Load Indirect Rd ← (Z) None 2
LD Rd, Z+ Load Indirect and Post-Increment Rd ← (Z), Z ← Z+1 None 2
LD Rd, -Z Load Indirect and Pre-Decrement Z ← Z - 1, Rd ← (Z) None 2
LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z + q) None 2
STS k, Rr Store Direct to SRAM (k) ← Rr None 3
ST X, Rr Store Indirect (X) ← Rr None 2

ATmega328PB Instruction Set (7)

Biomedical Engineering, Inje University 10

Mnemonics Operands Description Operation Flags
No. of
Clock

DATA TRANSFER INSTRUCTIONS
ST X+, Rr Store Indirect and Post-Increment (X) ← Rr, X ← X + 1 None 2
ST -X, Rr Store Indirect and Pre-Decrement X ← X - 1, (X) ← Rr None 2
ST Y, Rr Store Indirect (Y) ← Rr None 2
ST Y+, Rr Store Indirect and Post-Increment (Y) ← Rr, Y ← Y + 1 None 2
ST -Y, Rr Store Indirect and Pre-Decrement Y ← Y - 1, (Y) ← Rr None 2
STD Y+q,Rr Store Indirect with Displacement (Y + q) ← Rr None 2
ST Z, Rr Store Indirect (Z) ← Rr None 2
ST Z+, Rr Store Indirect and Post-Increment (Z) ← Rr, Z ← Z + 1 None 2
ST -Z, Rr Store Indirect and Pre-Decrement Z ← Z - 1, (Z) ← Rr None 2
STD Z+q,Rr Store Indirect with Displacement (Z + q) ← Rr None 2
LPM Load Program Memory R0← (Z) None 3
IN Rd, P In Port Rd ← P None 1
OUT P,Rr Out Port P ← Rr None 1
PUSH Rr Push Register on Stack STACK← Rr None 2
POP Rd Pop Register from Stack Rd ← STACK None 2

ATmega328PB Instruction Set (8)

Biomedical Engineering, Inje University 11

Mnemonics Operands Description Operation Flags
No. of
Clock

BIT AND BIT-TEST INSTRUCTIONS
LSL Rd Logical Shift Left Rd(n+1) ← Rd(n), Rd(0) ← 0, C ← Rd(7) Z,C,N,V,H 1
LSR Rd Logical Shift Right Rd(n) ← Rd(n+1), Rd(7) ← 0, C ← Rd(0) Z,C,N,V 1
ROL Rd Rotate Left Through Carry Rd(0) ← C, Rd(n+1) ← Rd(n), C ← Rd(7) Z,C,N,V,H 1
ROR Rd Rotate Right Through Carry Rd(7) ← C, Rd(n) ← Rd(n+1), C ← Rd(0) Z,C,N,V 1
ASR Rd Arithmetic Shift Right Rd(n) ← Rd(n+1), n=0..6 Z,C,N,V 1
SWAP Rd Swap Nibbles Rd(3..0) ↔ Rd(7..4) None 1
BSET s Flag Set SREG(s) ← 1 SREG(s) 1
BCLR s Flag Clear SREG(s) ← 0 SREG(s) 1
SBI P,b Set Bit in I/O Register I/O(P, b) ← 1 None 2
CBI P,b Clear Bit in I/O Register I/O(P, b) ← 0 None 2
BST Rr, b Bit Store from Register to T T ← Rr(b) T 1
BLD Rd, b Bit load from T to Register Rd(b) ← T None 1
SEC Set Carry C ← 1 C 1
CLC Clear Carry C ← 0 C 1
SEN Set Negative Flag N ← 1 N 1
CLN Clear Negative Flag N ← 0 N 1

ATmega328PB Instruction Set (9)

Biomedical Engineering, Inje University 12

Mnemonics Operands Description Operation Flags
No. of
Clock

BIT AND BIT-TEST INSTRUCTIONS
CLN Clear Negative Flag N ← 0 N 1
SEZ Set Zero Flag Z ← 1 Z 1
CLZ Clear Zero Flag Z ← 0 Z 1
SEI Global Interrupt Enable I ← 1 I 1
CLI Global Interrupt Disable I ← 0 I 1
SES Set Signed Test Flag S ← 1 S 1
CLS Clear Signed Test Flag S ← 0 S 1
SEV Set Two's Complement Overflow V ← 1 V 1
CLV Clear Two's Complement Overflow V ← 0 V 1
SET Set T in SREG T ← 1 T 1
CLT Clear T in SREG T ← 0 T 1
SEH Set Half Carry Flag in SREG H ← 1 H 1
CLH Clear Half Carry Flag in SREG H ← 0 H 1
NOP No Operation None 1
SLEEP Sleep None 1
WDR Watchdog Reset None 1

Assembly Language Statement Format

• An assembly language statement line may take one of the four following forms:
 [label:] directive [operands] [Comment]
 [label:] instruction [operands] [Comment]
 Comment
 Empty line

• A comment has the following form:
; [Text]

• Items placed in braces are optional.
• The text between the comment-delimiter (;) and the end of line (EOL) is ignored by the Assembler.
• Examples:

Note: There are no restrictions with respect to column placement of labels, directives, comments or instructions.

Biomedical Engineering, Inje University 13

label: .EQU var1=100 ; Set var1 to 100 (Directive)
.EQU var2=200 ; Set var2 to 200

test: rjmp test ; Infinite loop (Instruction)
; Pure comment line

; Another comment line

Assembler Directives (1)

• The directives are not translated directly into opcodes.

• They are used to adjust the location of the program in memory, define macros, initialize

memory and so on.

Biomedical Engineering, Inje University 14

Assembler Directives (2)

Biomedical Engineering, Inje University 15

Directive Description
BYTE Reserve byte to a variable
CSEG Code Segment
DB Define constant byte(s)
DEF Define a symbolic name on a register
DEVICE Define which device to assemble for
DSEG Data Segment
DW Define constant word(s)
ENDMACRO End macro
EQU Set a symbol equal to an expression

Directive Description
ESEG EEPROM Segment
EXIT Exit from file
INCLUDE Read source from another file
LIST Turn list file generation on
LISTMAC Turn macro expansion on
MACRO Begin macro
NOLIST Turn list file generation off
ORG Set program origin
SET Set a symbol to an expression

Note: All directives must be preceded by a period.

Assembler Directives (3)

Biomedical Engineering, Inje University 16

CSEG – Code Segment

The CSEG directive defines the start of a Code Segment. An Assembler file can consist of several Code Segments, which are
concatenated into one Code Segment when assembled. The BYTE directive can not be used within a Code Segment. The
default segment type is Code. The Code Segments have their own location counter which is a word counter. The ORG
directive (see description later in this document) can be used to place code and constants at specific locations in the
Program memory. The directive does not take any parameters.

.CSEG

.DSEG ; Start data segment
vartab: .BYTE 4 ; Reserve 4 bytes in SRAM

.CSEG ; Start code segment
const: .DW 2 ; Write 0x0002 in program memory

mov r1,r0 ; Do something

Assembler Directives (4)

Biomedical Engineering, Inje University 17

DSEG – Data Segment

The DSEG directive defines the start of a Data Segment. An Assembler file can consist of several Data Segments, which are
concatenated into one Data Segment when assembled. A Data Segment will normally only consist of BYTE directives (and
labels). The Data Segments have their own location counter which is a byte counter. The ORG directive (see description
later in this document) can be used to place the variables at specific locations in the SRAM. The directive does not take any
parameters.

.DSEG

.DSEG
var1: .BYTE 1 ; reserve 1 byte to var1
table: .BYTE 6 ; reserve 6 bytes to table

.CSEG
ldi r30,low(var1) ; Load Z register low
ldi r31,high(var1) ; Load Z register high
ld r1,Z ; Load var1 into r1

Assembler Directives (5)

Biomedical Engineering, Inje University 18

ESEG – EEPROM Segment

The ESEG directive defines the start of an EEPROM Segment. An Assembler file can consist of several EEPROM Segments,
which are concatenated into one EEPROM Segment when assembled. The BYTE directive can not be used within an
EEPROM Segment. The EEPROM Segments have their own location counter which is a byte counter. The ORG directive (see
description later in this document) can be used to place constants at specific locations in the EEPROM memory. The
directive does not take any parameters.

.ESEG

.DSEG ; Start data segment
vartab: .BYTE 4 ; Reserve 4 bytes in SRAM

.ESEG
eevar: .DW 0xff0f ; Initialize one word in EEPROM

.CSEG ; Start code segment
const: .DW 2 ; Write 0x0002 in prog.mem.

mov r1,r0 ; Do something

Assembler Directives (6)

Biomedical Engineering, Inje University 19

BYTE – Reserve bytes to a variable

The BYTE directive reserves memory resources in the SRAM. In order to be able to refer to the reserved location, the BYTE
directive should be preceded by a label. The directive takes one parameter, which is the number of bytes to reserve. The
directive can only be used within a Data Segment (see directives CSEG, DSEG and ESEG).
Note that a parameter must be given. The allocated bytes are not initialized.

LABEL: .BYTE expression

.DSEG
var1: .BYTE 1 ; reserve 1 byte to var1
table: .BYTE 6 ; reserve 6 bytes to table

.CSEG
ldi r30,low(var1) ; Load Z register low
ldi r31,high(var1) ; Load Z register high
ld r1,Z ; Load VAR1 into register 1

Assembler Directives (7)

Biomedical Engineering, Inje University 20

DB – Define constant byte(s) in program memory or EEPROM memory

The DB directive reserves memory resources in the program memory or the EEPROM memory. In order to be able to refer
to the reserved locations, the DB directive should be preceded by a label.
The DB directive takes a list of expressions, and must contain at least one expression. The DB directive must be placed in a
Code Segment or an EEPROM Segment.
The expression list is a sequence of expressions, delimited by commas. Each expression must evaluate to a number
between -128 and 255. If the expression evaluates to a negative number, the 8 bits two's complement of the number will
be placed in the program memory or EEPROM memory location.
If the DB directive is used in a Code Segment and the expression_list contains more than one expression, the expressions
are packed so that two bytes are placed in each program memory word. If the expression_list contains an odd number of
expressions, the last expression will be placed in a program memory word of its own, even if the next line in the assembly
code contains a DB directive.

LABEL: .DB expression_list

.CSEG
consts: .DB 0, 255, 0b01010101, -128, 0xaa

.ESEG
eeconst: .DB 0xff

Assembler Directives (8)

Biomedical Engineering, Inje University 21

DW – Define constant word(s) in program memory or E2PROM memory

The DW directive reserves memory resources in the program memory or EEPROM memory. In order to be able to refer to
the reserved locations, the DW directive should be preceded by a label.
The DW directive takes a list of expressions, and must contain at least one expression.
The DW directive must be placed in a Code Segment or an EEPROM Segment.
The expression list is a sequence of expressions, delimited by commas. Each expression must evaluate to a number
between -32768 and 65535. If the expression evaluates to a negative number, the 16 bits two's complement of the number
will be placed in the program memory location.

LABEL: .DW expression_list

.CSEG
varlist: .DW 0,0xffff,0b1001110001010101,-32768,65535

.ESEG
eevar: .DW 0xffff

Assembler Directives (9)

Biomedical Engineering, Inje University 22

DEF – Set a symbolic name on a register

The DEF directive allows the registers to be referred to through symbols. A defined symbol can be used in the rest of the

program to refer to the register it is assigned to. A register can have several symbolic names attached to it. A symbol can be

redefined later in the program.

LABEL: .DEF Symbol = Register

.DEF temp = R16

.DEF ior = R0

.CSEG

ldi temp,0xf0 ; Load 0xf0 into temp register

in ior,0x3f ; Read SREG into ior register

eor temp,ior ; Exclusive or temp and ior

Assembler Directives (10)

Biomedical Engineering, Inje University 23

EQU – Set a symbol equal to an expression

The EQU directive assigns a value to a label. This label can then be used in later expressions. A label assigned to a value by
the EQU directive is a constant and can not be changed or redefined.

.EQU label = expression

.EQU io_offset = 0x23

.EQU porta = io_offset + 2

.CSEG ; Start code segment
clr r2 ; Clear register 2
out porta,r2 ; Write to Port A

Assembler Directives (11)

Biomedical Engineering, Inje University 24

SET – Set a symbol equal to an expression

The SET directive assigns a value to a label. This label can then be used in later expressions.
A label assigned to a value by the SET directive can be changed later in the program.

.SET label = expression

.SET io_offset = 0x23

.SET porta = io_offset + 2

.CSEG ; Start code segment
clr r2 ; Clear register 2
out porta,r2 ; Write to Port A

Assembler Directives (12)

Biomedical Engineering, Inje University 25

ORG – Set program origin

The ORG directive sets the location counter to an absolute value. The value to set is given as a parameter.
If an ORG directive is given within a Data Segment, then it is the SRAM location counter which is set.
If the directive is given within a Code Segment, then it is the Program memory counter which is set.
If the directive is given within an EEPROM Segment, then it is the EEPROM location counter which is set.
If the directive is preceded by a label (on the same source code line), the label will be given the value of the parameter.
The default values of the Code and EEPROM location counters are zero, whereas the default value of the SRAM location
counter is 32 (due to the registers occupying addresses 0-31) when the assembling is started. Note that the EEPROM and
SRAM location counters count bytes whereas the Program memory location counter counts words.

.ORG expression

.DSEG ; Start data segment

.ORG 0x67 ; Set SRAM address to hex 67
rvar: .BYTE 1 ; Reserve a byte at SRAM address 67H

.ESEG ; Start EEPROM Segment

.ORG 0x20 ; Set EEPROM location counter
eevar: .DW 0xfeff ; Initialize one word

.CSEG

.ORG 0x10 ; Set Program Counter to hex 10
mov r0,r1 ; Do something

Assembler Directives (13)

Biomedical Engineering, Inje University 26

INCLUDE – Include another file

The INCLUDE directive tells the Assembler to start reading from a specified file. The Assembler then assembles the
specified file until end of file (EOF) or an EXIT directive is encountered. An included file may itself contain INCLUDE
directives.

.INCLUDE “filename”

.EQU sreg = 0x3f ; Status register

.EQU sphigh = 0x3e ; Stack pointer high

.EQU splow = 0x3d ; Stack pointer low
; incdemo.asm

.INCLUDE “iodefs.asm” ; Include I/O definitions
in r0,sreg ; Read status register

Expressions (1)

Biomedical Engineering, Inje University 27

The following operands can be used:
• User defined labels which are given the value of the location counter at the place they appear.
• User defined variables defined by the SET directive
• User defined constants defined by the EQU directive
• Integer constants: constants can be given in several formats, including,

 Decimal (default): 10, 255

 Hexadecimal (two notations): 0x0a, $0a, 0xff, $ff

 Binary: 0b00001010, 0b11111111

• PC - the current value of the Program memory location counter

Expressions can consist of operands, operators and functions. All expressions are internally 32 bits.

Operands

Expressions (2)

Biomedical Engineering, Inje University 28

The following functions are defined:
• LOW(expression) returns the low byte of an expression
• HIGH(expression) returns the second byte of an expression
• BYTE2(expression) is the same function as HIGH
• BYTE3(expression) returns the third byte of an expression
• BYTE4(expression) returns the fourth byte of an expression
• LWRD(expression) returns bits 0-15 of an expression
• HWRD(expression) returns bits 16-31 of an expression
• PAGE(expression) returns bits 16-21 of an expression
• EXP2(expression) returns 2^expression
• LOG2(expression) returns the integer part of log2(expression)

Functions

Expressions (3): Operators

Biomedical Engineering, Inje University 29

Symbol: !
Description: Unary operator which returns 1 if the expression was zero, and returns 0 if the
expression was nonzero
Precedence: 14
Example: ldi r16,!0xf0 ; Load r16 with 0x00

Logical NOT

Symbol: ~
Description: Unary operator which returns the input expression with all bits inverted
Precedence: 14
Example: ldi r16,~0xf0 ; Load r16 with 0x0f

Bitwise NOT

Expressions (4): Operators

Biomedical Engineering, Inje University 30

Symbol: -
Description: Unary operator which returns the arithmetic negation of an expression
Precedence: 14
Example: ldi r16,-2 ; Load -2(0xfe) in r16

Unary Minus

Symbol: *
Description: Binary operator which returns the product of two expressions
Precedence: 13
Example: ldi r30,label*2 ; Load r30 with label*2

Multiplication

Expressions (5): Operators

Biomedical Engineering, Inje University 31

Symbol: /
Description: Unary operator which returns the arithmetic negation of an expression
Precedence: 13
Example: ldi r30,label/2 ; Load r30 with label/2

Division

Symbol: +
Description: Binary operator which returns the sum of two expressions
Precedence: 12
Example: ldi r30,c1+c2 ; Load r30 with c1+c2

Addition

Expressions (6): Operators

Biomedical Engineering, Inje University 32

Symbol: -
Description: Binary operator which returns the left expression minus the right expression
Precedence: 12
Example: ldi r17,c1-c2 ; Load r17 with c1-c2

Subtraction

Symbol: <<
Description: Binary operator which returns the left expression shifted left a number of times given by
the right expression
Precedence: 11
Example: ldi r17,1<<5 ; Load r17 with 1 shifted left 5 times

Shift left

Expressions (7): Operators

Biomedical Engineering, Inje University 33

Symbol: >>
Description: Binary operator which returns the left expression shifted right a number of times given
by the right expression
Precedence: 11
Example: ldi r17,c1>>c2 ; Load r17 with c1 shifted right c2 times

Shift right

Symbol: &
Description: Binary operator which returns the bitwise And between two expressions
Precedence: 8
Example: ldi r18,High(c1&c2) ; Load r18 with an expression

Bitwise AND

Expressions (8): Operators

Biomedical Engineering, Inje University 34

Symbol: ^
Description: Binary operator which returns the bitwise Exclusive Or between two expressions
Precedence: 7
Example: ldi r18,Low(c1^c2) ; Load r18 with an expression

Bitwise XOR

Symbol: |
Description: Binary operator which returns the bitwise Or between two expressions
Precedence: 6
Example: ldi r18,Low(c1|c2) ; Load r18 with an expression

Bitwise OR

Recommendation for the use of registers

Biomedical Engineering, Inje University 35

• Define names for registers with the .DEF directive, never use them with their direct name Rx.

• If you need pointer access reserve R26 to R31 for that purpose.

• A 16-bit-counter is best located in R25:R24.

• If you need to read from the program memory reserve Z (R31:R30) and R0 for that purpose.

• If you need to access to single bits within certain registers, use R16 to R23 for that purpose.

• Registers necessary for math are best placed to R1 to R15.

• If you have more than enough registers available, place all your variables in registers.

• If you get short in registers, place as many variables as necessary to SRAM.

Assembly Language Programming Example (1)

Biomedical Engineering, Inje University 36

• Define names for registers with the .DEF directive, never use them with their direct name Rx.

• If you need pointer access reserve R26 to R31 for that purpose.

• A 16-bit-counter is best located in R25:R24.

• If you need to read from the program memory reserve Z (R31:R30) and R0 for that purpose.

• If you need to access to single bits within certain registers, use R16 to R23 for that purpose.

• Registers necessary for math are best placed to R1 to R15.

• If you have more than enough registers available, place all your variables in registers.

• If you get short in registers, place as many variables as necessary to SRAM.

Mixed Language Programming (1)

Biomedical Engineering, Inje University 37

/* main.c */

#include <avr/io.h>

extern void asm_func(uint8_t val);

int main(void)
{

DDRB = 0xFF;
asm_func(3);

}

/* asm_files.s */

#define __SFR_OFFSET 0
#include <avr/io.h>

.global asm_func

.section .text

asm_func:
OUT PORTB,R24
RET

#define __SFR_OFFSET 0
To use these addresses in in/out instructions, you must subtract 0x20 from them.

Example: A C language function calls an assembly language function.

Mixed Language Programming (2)

Biomedical Engineering, Inje University 38

Passing Parameters between C and Assembly Functions

• Parameters are passed via R25:R8 (R25 to R8).
• Parameters are passed left to right.

• In this example,
 i would be stored in R25:24 (with the actual 8-bit value stored in R24).
 j would be stored in R23:22 (with the actual 8-bit value stored in R22).

• If the parameters passed require more memory than is available in the registers R25:R8, then the stack is used
to pass additional parameters.

• Return values are placed in registers beginning at R25.
 An 8-bit value gets returned in R24.
 An 16-bit value gets returned in R25:R24.
 An 32-bit value gets returned in R25:R22.
 An 64-bit value gets returned in R25:R18.

uint8_t function(uint8_t i, uint8_t j);

Application Development Tools (1)

Biomedical Engineering, Inje University 39

• Atmel Studio - Software

 Integrated Development Environment (IDE)

 Edit, compile, link, debug

 Simulation and FLASH programming

 Includes GNU C/C++ compiler

Application Development Tools (2)

Biomedical Engineering, Inje University 40

• ATmega328P(B) Xplained Mini Evaluation Kit - Hardware
 On-board debugger with full source-level debugging support in Atmel Studio.

 Auto-ID for board identification in Atmel Studio 7

 Access to all signals on target MCU.

 One yellow user LED / One mechanical user pushbutton

 Virtual COM port (CDC)

 16MHz target clock

 USB powered

 Arduino shield compatible foot prints

 Supported with application examples published on Atmel Spaces

Download and Install Atmel Studio 7

Biomedical Engineering, Inje University 41

http://www.microchip.com/development-tools/atmel-studio-7

ATmega328P(B) Xplained Mini Evaluation Kit

Biomedical Engineering, Inje University 42

Create an AVR Application in Assembly Language (1)

Biomedical Engineering, Inje University 43

1. Run AVR Studio 7.

2. Connect ATmega328P(B) Xplained

Mini to PC via USB Micro-B cable.

3. Image of the detected ATmega328P

Xplained Mini is displayed with

related information.

Create an AVR Application in Assembly Language (2)

Biomedical Engineering, Inje University 44

1. Select

File – New – Project…

Create an AVR Application in Assembly Language (3)

Biomedical Engineering, Inje University 45

①

②

③
④

⑤

⑥

Your project name

Create an AVR Application in Assembly Language (4)

Biomedical Engineering, Inje University 46

①

②

③

Type the target chip name to
make the device list short.

Create an AVR Application in Assembly Language (5)

Biomedical Engineering, Inje University 47

Auto-generated
source program.

Create an AVR Application in Assembly Language (6)

Biomedical Engineering, Inje University 48

START: LDI R16,(1 << 5) ; Set PB5 as OUTPUT mode
OUT DDRB,R16

LOOP: SBI PINB,5 ; Toggle LED @PB5

DLY0: LDI R18,13
DLY1: LDI R17,125
DLY2: LDI R16,0
DLY3: NOP

DEC R16
BRNE DLY3

DEC R17
BRNE DLY2

DEC R18
BRNE DLY1

RJMP LOOP

Edit source file: main.asm

Create an AVR Application in Assembly Language (7)

Biomedical Engineering, Inje University 49

①

②

or

Build (Assemble and Link)

Create an AVR Application in Assembly Language (8)

Biomedical Engineering, Inje University 50

Build results (succeeded case)

Debugging the Application (1)

Biomedical Engineering, Inje University 51

or

①

②

Start debugging

Debugging the Application (2)

Biomedical Engineering, Inje University 52

You will get this error message if you start
execution of the application without
selecting a debugger/programmer.

Debugging the Application (3)

Biomedical Engineering, Inje University 53

①
②

③

④

Selecting a
debugger/programmer

Debugging the Application (4)

Biomedical Engineering, Inje University 54

or

①

②

Program execution stops here
and waits for user input

Start debugging

Debugging the Application (5)

Biomedical Engineering, Inje University 55

Open I/O window for debugging
(Watching registers associated to PORTB)

①

②

③

Debugging the Application (6)

Biomedical Engineering, Inje University 56

Step Over

Debugging the Application (7)

Biomedical Engineering, Inje University 57

Step Over

Debugging the Application (8)

Biomedical Engineering, Inje University 58

Step Over
①

Debugging the Application (9)

Biomedical Engineering, Inje University 59

Step Over
①

Debugging the Application (10)

Biomedical Engineering, Inje University 60

Continue execution

①

LED blinking continues…

Stop debugging

①

Debugging the Application (11)

Biomedical Engineering, Inje University 61

Execution continues
till the BREAK point

Set BREAK Point
①

②

Start the Application Without Debugging

Biomedical Engineering, Inje University 62

or

①

②

Congratulations!
You have successfully developed an AVR application in assembly language.

Create an AVR Application in C Language (1)

Biomedical Engineering, Inje University 64

1. Connect ATmega328PB Xplained Mini to PC via USB Micro-B cable.

2. Three drivers will be installed when the board is connected for the first time.

Create an AVR Application in C Language (2)

Biomedical Engineering, Inje University 65

1. Run AVR Studio 7.

2. Image of the detected ATmega328PB

Xplained Mini is displayed with

related information.

Create an AVR Application in C Language (3)

Biomedical Engineering, Inje University 66

1. Select

File – New – Project…

Create an AVR Application in C Language (4)

Biomedical Engineering, Inje University 67

①
②

③
④

⑤
⑥

Your project name

Create an AVR Application in C Language (5)

Biomedical Engineering, Inje University 68

①

②

③

Type the target chip name to
make the device list short.

Create an AVR Application in C Language (6)

Biomedical Engineering, Inje University 69

Auto-generated
source program.

Create an AVR Application in C Language (7)

Biomedical Engineering, Inje University 70

#define F_CPU16000000
#include <avr/io.h>
#include <util/delay.h>

int main(void)
{
DDRB = 0b00100000;// Set PB5 to OUTPUT mode
while (1)
{
PORTB = 0b00100000; // Output '1' to PB5
_delay_ms(100); // Turn ON LED at PB5 for 100 msec
PORTB = 0b00000000; // Output '0' to PB5
_delay_ms(500); // Turn OFF LED at PB5 for 500 msec

}
}

Edit source file: main.c

Create an AVR Application in C Language (8)

Biomedical Engineering, Inje University 71

①

②

or

Build (Compile and Link)

Create an AVR Application in C Language (9)

Biomedical Engineering, Inje University 72

Build results (succeeded case)

Download and Run the Application

Biomedical Engineering, Inje University 73

or

Debugging the Application (1)

Biomedical Engineering, Inje University 74

or

①

②

Start debugging

Debugging the Application (2)

Biomedical Engineering, Inje University 75

You will get this error message if you start
execution of the application without
selecting a debugger/programmer.

Debugging the Application (3)

Biomedical Engineering, Inje University 76

①
②

③

④

Selecting a
debugger/programmer

Debugging the Application (4)

Biomedical Engineering, Inje University 77

or

①

②

Program execution stops here
and waits for user input

Start debugging

Debugging the Application (5)

Biomedical Engineering, Inje University 78

Open I/O window for debugging
(Watching registers associated to PORTB)

①

②

③

Debugging the Application (6)

Biomedical Engineering, Inje University 79

Step Over

Debugging the Application (10)

Biomedical Engineering, Inje University 80

Continue execution

①

LED blinking continues…

Stop debugging

①

Congratulations!
You have successfully developed an AVR application in C language.

What’s next?

Biomedical Engineering, Inje University 82

Summary

Biomedical Engineering, Inje University 83

• ATmega328PB instruction set

• Assembly language directives

• Assembly language expressions

• Mixed Language Programming

