
TWI
(I2C)

Two-Wire Serial Interface
(Inter-Integrated Circuit)

Nov. 21, 2019 Biomedical Engineering, Inje University

I²C and TWI (1)

• I²C (Inter-Integrated Circuit), pronounced I-squared-C, is a multi-master, multi-slave,

single-ended, serial computer bus.

• It is invented by Philips Semiconductor (now NXP Semiconductors).

• It is typically used for attaching lower-speed peripheral ICs to processors and

microcontrollers in short-distance, intra-board communication.

• Alternatively I²C is spelled I2C (pronounced I-two-C) or IIC (pronounced I-I-C).

• TWI (Two Wire Interface) is essentially the same bus implemented on various system-on-

chip processors from Atmel.

• In some cases, use of the term TWI indicates incomplete implementation of the I²C

specification.

 Not supporting arbitration or clock stretching is one common limitation, that is still useful for a

single master communicating with simple slaves that never stretch the clock.

I²C and TWI (2)

• Consists of

 SDA: Serial Data

 SCL: Serial Clock

• Simple, Powerful and Flexible Communication Interface with only two Bus Lines

• Both Master and Slave operation supported

• Device can operate as Transmitter or Receiver

• 7-bit Address Space allows up to 128 different Slave Addresses

• Multi-master Arbitration support

• Up to 400kHz Data Transfer Speed

• Slew-rate limited output drivers

• Noise Suppression Circuitry rejects spikes on Bus Lines

• Fully programmable Slave Address with General Call support

• Address Recognition causes Wake-up when AVR is in Sleep Mode

• Compatible with Philips’ I2C protocol

• Two TWI instances TWI0 and TWI1 (ATmega328P has one TWI only, TWI0)

ATmega328PB TWI Features

TWI Terminology

Term Description

Master
The device that initiates and terminates a transmission.
The Master also generates the SCL clock.

Slave The device addressed by a Master.

Transmitter The device placing data on the bus.

Receiver The device reading data from the bus.

The Power Reduction TWI bit in the Power Reduction Register (PRRn.PRTWI) must be written
to '0' to enable the two-wire Serial Interface.

• Both bus lines are connected to the positive supply voltage through pull-up resistors.

• The bus drivers of all TWI-compliant devices are open-drain or open-collector. This

implements a wired-AND function which is essential to the operation of the interface.

TWI Electrical Interconnection (1)

• A low level on a TWI bus line is generated when one or more TWI devices output a zero.

• A high level is output when all TWI devices tri-state their outputs, allowing the pull-up

resistors to pull the line high.

TWI Electrical Interconnection (2)

• START condition: A HIGH to LOW transition of the SDA line while SCL is HIGH.

• STOP condition: A LOW to HIGH transition of the SDA line while SCL is HIGH.

• START and STOP conditions are always generated by the master.

• Between a START and a STOP condition, the bus is considered busy, and no other master

should try to seize control of the bus.

TWI START and STOP Conditions (1)

PS

START condition STOP condition

SDA

SCL

• Bus Busy:

 After a START condition the bus is considered to be busy.

 No other master should try to seize control of the bus.

• Bus Idle:

 The bus becomes idle again after a STOP condition

TWI START and STOP Conditions (2)

idlebusy PS

START condition STOP condition

SDA

SCL

• REPEATED START condition: A new START condition is issued between a START and STOP

condition and is used when the Master wishes to initiate a new transfer without

relinquishing control of the bus.

TWI REPEATED START Conditions

• A typical TWI transaction consists of

 START condition

 Slave address byte (Bits7-1: 7-bit slave address; Bit0: R/W direction bit)

 One or more bytes of data

 ACK/NAK bit

 STOP condition

Typical TWI Transaction (1)

SMBDAT

SMBCLKSCL

SDA

• ACK

 Each byte that is received (by a master or slave) must be acknowledged (ACK) with a

low SDA during a high SCL.

• NACK

 If the receiving device does not ACK, the transmitting device will read a “not

acknowledge” (NACK), which is a high SDA during a high SCL.

Typical TWI Transaction (2)

SMBDAT

SMBCLKSCL

SDA

Typical TWI Transaction (3)

• The direction bit (R/W) occupies the least-significant bit position of the address.

 READ: The direction bit is set to logic 1

 WRITE: The direction bit is set to logic 0

SMBDAT

SMBCLKSCL

SDA

• Bus free:

 After a STOP condition, or

 After the SCL and SDA lines remain high for a specified time.

• A master may start a transfer only if the bus is free.

• What will happen if two or more devices attempt to begin a transfer

at the same time?

 An arbitration scheme is employed to force one master to give up the bus.

TWI: Arbitration

• The master devices continue transmitting until one attempts a HIGH

while the other transmits a LOW.

• Since the bus is open-drain, the bus will be pulled LOW.

• The master attempting the HIGH will detect a LOW SDA and give up

the bus.

• The winning master continues its transmission without interruption;

the losing master becomes a slave and receives the rest of the

transfer.

• This arbitration scheme is non-destructive: one device always wins,

and no data is lost.

TWI: Arbitration Scheme

• The TWI interface may be configured to operate as a master and/or a slave.

• At any particular time, the interface will be operating in one of the following modes:

 Master Transmitter

 Master Receiver

 Slave Transmitter

 Slave Receiver

TWI: Transfer Modes

TWI: Master Transmitter Mode

S AData Byte PAAWSlave Addr. Data Byte

S START. Transmitted by ATmega328 TWI.

Slave Addr.

Data byte. Transmitted by ATmega328 TWI.

W Data direction (R/W) bit. Transmitted by ATmega328 TWI. Logic 0.

A ACK. Received by ATmega328 TWI.

P STOP. Transmitted by ATmega328 TWI.

Data Byte

Slave address. Transmitted by ATmega328 TWI.

TWI: Master Receiver Mode

S AData Byte PNARSlave Addr. Data Byte

S START. Transmitted by ATmega328 TWI.

Slave Addr. Slave address. Transmitted by ATmega328 TWI.

R Data direction (R/W) bit. Transmitted by ATmega328 TWI. Logic 1

A ACK. Received by ATmega328 TWI.

P STOP. Transmitted by ATmega328 TWI.

Data Byte Data byte. Received by ATmega328 TWI.

N

ACK or NACK. Transmitted by ATmega328 TWI depending on the state of the TWEA bit
in register TWCRn.

A

TWI: Slave Transmitter Mode

S AData Byte PNARSlave Addr. Data Byte

S START. Received by ATmega328 TWI.

Slave Addr. Slave address (TWARn register). Received by ATmega328 TWI.

R Data direction (R/W) bit. Received by ATmega328 TWI. Logic 1

A ACK. Transmitted by ATmega328 TWI.

P STOP. Received by ATmega328 TWI.

Data Byte Data byte. Transmitted by ATmega328 TWI.

A ACK. Received by ATmega328 TWI.

N NACK. Received by ATmega328 TWI.

TWI: Slave Receiver Mode

S AData Byte PAAWSlave Addr. Data Byte

S START. Received by ATmega328 TWI.

Slave Addr. Slave address (TWARn register). Received by ATmega328 TWI.

W Data direction (R/W) bit. Received by ATmega328 TWI. Logic 0

A

P STOP. Received by ATmega328 TWI.

Data Byte Data byte. Received by ATmega328 TWI.

N

ACK or NACK. Transmitted by ATmega328 TWI depending on the state of the
TWEA bit in register TWCRn.

Interfacing Application to the TWI in Master Transmitter (1)

START SLA+W A Data A STOPTWI Bus

1. Application writes
to TWCRn to initiate
transmission of
START

1. Application writes
to TWCRn to initiate
transmission of
START

2.TWINT set.
Status code indicates
START condition sent.

2.TWINT set.
Status code indicates
START condition sent.

3. Check TWSRn to see if
START was sent. Application
loads SLA+W into TWDRn, and
loads appropriate control
signals into TWCRn, making
sure that TWINT is written to 1,
and TWSTA is written to 0.

3. Check TWSRn to see if
START was sent. Application
loads SLA+W into TWDRn, and
loads appropriate control
signals into TWCRn, making
sure that TWINT is written to 1,
and TWSTA is written to 0.

4.TWINT set.
Status code indicates
SLA+W sent, ACK received.

4.TWINT set.
Status code indicates
SLA+W sent, ACK received.

5. Check TWSRn to see if
SLA+W was sent and ACK
received. Application loads
data into TWDRn, and loads
appropriate control signals
into TWCRn, making sure
that TWINT is written to 1.

5. Check TWSRn to see if
SLA+W was sent and ACK
received. Application loads
data into TWDRn, and loads
appropriate control signals
into TWCRn, making sure
that TWINT is written to 1.

6.TWINT set.
Status code indicates
data sent, ACK received.

6.TWINT set.
Status code indicates
data sent, ACK received.

7. Check TWSRn to see if
data was sent and ACK
received. Application
loads appropriate control
signals to send STOP into
TWCRn, making sure that
TWINT is written to 1.

7. Check TWSRn to see if
data was sent and ACK
received. Application
loads appropriate control
signals to send STOP into
TWCRn, making sure that
TWINT is written to 1.

TWINT=1 TWINT=1 TWINT=1

1. The first step in a TWI transmission is to transmit a START condition.

 This is done by writing a specific value into TWCRn , instructing the TWIn hardware to

transmit a START condition.

 The TWIn will not start any operation as long as the TWINT bit in TWCRn is set. Writing

a 1 to TWINT clears the flag.

 Immediately after the application has cleared TWINT, the TWIn will initiate transmission

of the START condition.

2. When the START condition has been transmitted, the TWINT flag in TWCRn is set,

and TWSRn is updated with a status code indicating that the START condition has

successfully been sent.

Interfacing Application to the TWI in Master Transmitter (2)

3. The application software should now examine the value of TWSRn, to make sure that the

START condition was successfully transmitted.

 If TWSRn indicates otherwise, the application software might take some special action, like calling an

error routine.

 Assuming that the status code is as expected, the application must load SLA+W into TWDRn.

 Remember that TWDRn is used both for address and data.

 After TWDRn has been loaded with the desired SLA+W, a specific value must be written to TWCRn,

instructing the TWIn hardware to transmit the SLA+W present in TWDRn.

 The TWIn will not start any operation as long as the TWINT bit in TWCRn is set. Writing a 1 to TWINT

clears the flag.

 Immediately after the application has cleared TWINT, the TWIn will initiate transmission of the

address packet.

Interfacing Application to the TWI in Master Transmitter (3)

4. When the address packet has been transmitted, the TWINT flag in TWCRn is set, and TWSRn is updated

with a status code indicating that the address packet has successfully been sent.

 The status code will also reflect whether a Slave acknowledged the packet or not.

5. The application software should now examine the value of TWSRn, to make sure that the address packet

was successfully transmitted, and that the value of the ACK bit was as expected.

 If TWSRn indicates otherwise, the application software might take some special action, like calling an

error routine.

 Assuming that the status code is as expected, the application must load a data packet into TWDRn.

 Subsequently, a specific value must be written to TWCRn, instructing the TWIn hardware to transmit

the data packet present in TWDRn.

 The TWIn will not start any operation as long as the TWINT bit in TWCRn is set. Writing a 1 to TWINT

clears the flag.

 Immediately after the application has cleared TWINT, the TWIn will initiate transmission of the data

packet.

Interfacing Application to the TWI in Master Transmitter (4)

6. When the data packet has been transmitted, the TWINT flag in TWCRn is set, and TWSRn is updated with

a status code indicating that the data packet has successfully been sent.

 The status code will also reflect whether a Slave acknowledged the packet or not.

7. The application software should now examine the value of TWSRn, to make sure that the data packet was

successfully transmitted, and that the value of the ACK bit was as expected.

 If TWSR indicates otherwise, the application software might take some special action, like calling an error routine.

 Assuming that the status code is as expected, the application must write a specific value to TWCRn, instructing the

TWIn hardware to transmit a STOP condition.

 The TWIn will not start any operation as long as the TWINT bit in TWCRn is set. Writing a 1 to TWINT clears the flag.

 Immediately after the application has cleared TWINT, the TWI will initiate transmission of the STOP condition.

 Note that TWINT is not set after a STOP condition has been sent.

Interfacing Application to the TWI in Master Transmitter (5)

C Example Code Comments

1 TWCR0 = (1 << TWINT) | (1 << TWSTA) | (1 << TWEN) Send START condition

2 while (!(TWCR0 & (1<<TWINT)));
Wait for TWINT Flag set. This indicates that the START condition has been

transmitted.

3

if ((TWSR0 & 0xF8) != START)
ERROR();

Check value of TWI Status Register. Mask prescaler bits. If status different from

START, go to ERROR.

TWDR0 = SLA_W;
TWCR0 = (1 << TWINT) | (1 << TWEN);

Load SLA_W into TWDR Register. Clear TWINT bit in TWCR to start transmission

of address.

4 while (!(TWCR0 & (1 << TWINT)));
Wait for TWINT Flag set. This indicates that the SLA+W has been transmitted, and

ACK/NACK has been received.

5

if ((TWSR0 & 0xF8) != MT_SLA_ACK)
ERROR();

Check value of TWI Status Register. Mask prescaler bits. If status different from

MT_SLA_ACK go to ERROR.

TWDR0 = DATA;
TWCR0 = (1 << TWINT) | (1 << TWEN);

Load DATA into TWDR Register. Clear TWINT bit in TWCR to start transmission of

data.

6 while (!(TWCR0 & (1 << TWINT)));
Wait for TWINT Flag set. This indicates that the DATA has been transmitted, and

ACK/NACK has been received.

7

if ((TWSR0 & 0xF8) != MT_DATA_ACK)
ERROR();

Check value of TWI Status Register. Mask prescaler bits. If status different from

MT_DATA_ACK go to ERROR.

TWCR0 = (1 << TWINT) | (1 << TWEN) | (1 << TWSTO); Transmit STOP condition.

Interfacing Application to the TWI in Master Transmitter (6)

TWI Master Transmitter Mode (1)

• In order to enter a Master mode, a START condition must be transmitted.

• The format of the following address packet determines whether Master Transmitter (MT) or Master

Receiver (MR) mode is to be entered:

 If SLA +W is transmitted, MT mode is entered.

 if SLA+R is transmitted, MR mode is entered.

• All the status codes mentioned here assume that the prescaler bits are zero or are masked to zero.

TWI Master Transmitter Mode (2)

• A START condition is sent by writing a value to the TWI Control Register n (TWCRn) of the type

TWCRn=1x10x10x:

 The TWI Enable bit (TWCRn.TWEN) must be written to '1' to enable the 2-wire Serial Interface

 The TWI Start Condition bit (TWCRn.TWSTA) must be written to '1' to transmit a START condition

 The TWI Interrupt Flag (TWCRn.TWINT) must be written to '1' to clear the flag.

• The TWIn will then test the 2-wire Serial Bus and generate a START condition as soon as the bus becomes

free.

• After a START condition has been transmitted, the TWINT flag is set by hardware, and the status code in

TWSRn will be 0x08.

• In order to enter MT mode, SLA+W must be transmitted. This is done by writing SLA+W to the TWI Data

Register (TWDRn).

• Thereafter, the TWCRn.TWINT flag should be cleared by writing a '1' to it to continue the transfer. This is

accomplished by writing a value to TWRCn of the type TWCRn=1x00x10x.

TWI Master Transmitter Mode (3)

• When SLA+W have been transmitted and an acknowledgment bit has been received, TWINT is set again and a number of

status codes in TWSRn are possible. Possible status codes in Master mode are 0x18, 0x20, or 0x38.

• The appropriate action to be taken for each of these status codes is detailed in the Status Code table below.

• When SLA+W has been successfully transmitted, a data packet should be transmitted.

 This is done by writing the data byte to TWDRn.

 TWDRn must only be written when TWINT is high.

 If not, the access will be discarded, and the Write Collision bit (TWWC) will be set in the TWCRn Register.

• After updating TWDRn, the TWINT bit should be cleared by writing '1' to it to continue the transfer.

 This is accomplished by writing again a value to TWCRn of the type TWCRn=1x00x10x.

• This scheme is repeated until the last byte has been sent and the transfer is ended, either by generating a STOP condition

or a by a repeated START condition.

 A STOP condition is generated by writing a value of the type TWCRn=1x01x10x.

 A repeated START condition is accomplished by writing a regular START value TWCRn=1x10x10x.

• After a repeated START condition (status code 0x10), the 2-wire Serial Interface can access the same Slave again, or a

new Slave without transmitting a STOP condition.

• Repeated START enables the Master to switch between Slaves, Master Transmitter mode and Master Receiver mode

without losing control of the bus.

TWI Status Codes for Master Transmitter Mode (1)

Status Code
(TWSRn)
Prescaler
bits are 0

Status of the 2-wire
Serial Bus and 2-wire
Serial Interface
Hardware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCRn

STA STO TWINT TWEA

0x08
A START condition has
been transmitted

Load SLA+W 0 0 1 X
SLA+W will be transmitted;
ACK or NOT ACK will be received.

0x10
A repeated START
condition has been
transmitted

Load SLA+W 0 0 1 X
SLA+W will be transmitted;
ACK or NOT ACK will be received

Load SLA+R
0 0 1 X

SLA+R will be transmitted;
Logic will switch to Master Receiver mode

0x18

SLA+W has been
transmitted;
ACK has been
received

Load data byte 0 0 1 X
Data byte will be transmitted and ACK or NOT ACK will
be received

No TWDRn
Action

1 0 1 X Repeated START will be transmitted

No TWDRn
action

0 0 1 X
STOP condition will be transmitted and TWSTO Flag
will be reset

No TWDRn
action

1 1 1 X
STOP condition followed by a START condition will be
transmitted and TWSTO flag will be reset

TWI Status Codes for Master Transmitter Mode (2)

Status Code
(TWSRn)
Prescaler
bits are 0

Status of the 2-wire
Serial Bus and 2-wire
Serial Interface
Hardware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCRn

STA STO TWINT TWEA

0x20

SLA+W has been
transmitted;
NOT ACK has been
received

Load data byte 0 0 1 X
Data byte will be transmitted and ACK or
NOT ACK will be received.

No TWDRn
action

1 0 1 X Repeated START will be transmitted.

No TWDRn
action

0 1 1 X
STOP condition will be transmitted and
TWSTO Flag will be reset

No TWDRn
action

1 1 1 X
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

0x28

Data byte has been
transmitted;
ACK has been
received

Load data byte 0 0 1 X
Data byte will be transmitted and ACK or NOT ACK will
be received

No TWDRn
action

1 0 1 X Repeated START will be transmitted

No TWDRn
action

0 1 1 X
STOP condition will be transmitted and TWSTO Flag
will be reset

No TWDRn
action

1 1 1 X
STOP condition followed by a START condition will be
transmitted and TWSTO flag will be reset

TWI Status Codes for Master Transmitter Mode (3)

Status Code
(TWSRn)
Prescaler
bits are 0

Status of the 2-wire
Serial Bus and 2-wire
Serial Interface
Hardware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCRn

STA STO TWINT TWEA

0x30

Data byte has been
transmitted;
NOT ACK has been
received

Load data byte 0 0 1 X
Data byte will be transmitted and ACK or
NOT ACK will be received.

No TWDRn
action

1 0 1 X Repeated START will be transmitted.

No TWDRn
action

0 1 1 X
STOP condition will be transmitted and
TWSTO Flag will be reset

No TWDRn
action

1 1 1 X
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

0x38
Arbitration lost in
SLA+W or data bytes

No TWDRn
action

0 0 1 X
2-wire Serial Bus will be released and not addressed
Slave mode entered.

No TWDRn
action

1 0 1 X
A START condition will be transmitted when the bus
becomes free

TWI Status Codes for Master Receiver Mode (1)

Status Code
(TWSRn)
Prescaler
bits are 0

Status of the 2-wire
Serial Bus and 2-wire
Serial Interface
Hardware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCRn

STA STO TWINT TWEA

0x08
A START condition has
been transmitted

Load SLA+R 0 0 1 X
SLA+R will be transmitted;
ACK or NOT ACK will be received.

0x10
A repeated START
condition has been
transmitted

Load SLA+R 0 0 1 X
SLA+R will be transmitted;
ACK or NOT ACK will be received

Load SLA+W 0 0 1 X
SLA+W will be transmitted;
Logic will switch to Master Transmitter mode

0x38
Arbitration lost in
SLA+R or NOT ACK bit

No TWDRn
action

0 0 1 X
2-wire Serial Bus will be released and not
addressed Slave mode will be entered

No TWDRn
action

1 0 1 X
A START condition will be transmitted when the bus
becomes free.

TWI Status Codes for Master Receiver Mode (2)

Status Code
(TWSRn)
Prescaler
bits are 0

Status of the 2-wire
Serial Bus and 2-wire
Serial Interface
Hardware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCRn

STA STO TWINT TWEA

0x40

SLA+R has been
transmitted;
ACK has been
received

No TWDRn
action

0 0 1 0
Data byte will be received and NOT ACK will be
returned.

No TWDRn
action

0 0 1 1 Data byte will be received and ACK will be returned.

0x48

SLA+R has been
transmitted;
NOT ACK has been
received

No TWDRn
action

1 0 1 X Repeated START will be transmitted.

No TWDRn
action

0 1 1 X
STOP condition will be transmitted and TWSTO Flag
will be reset.

No TWDRn
action

1 1 1 X
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset.

TWI Status Codes for Master Receiver Mode (3)

Status Code
(TWSRn)
Prescaler
bits are 0

Status of the 2-wire
Serial Bus and 2-wire
Serial Interface
Hardware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCRn

STA STO TWINT TWEA

0x50

Data byte has been
received;
ACK has been
returned.

Read data byte 0 0 1 0
Data byte will be received and NOT ACK will be
returned.

Read data byte 0 0 1 1 Data byte will be received and ACK will be returned.

0x58

Data byte has been
received;
NOT ACK has been
returned.

Read data byte 1 0 1 X Repeated START will be transmitted.

Read data byte 0 1 1 X
STOP condition will be transmitted and TWSTO Flag
will be reset.

Read data byte 1 1 1 X
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset.

Transmitted from Master to Slave

TWI Combining Several TWI Modes (1)

• In some cases, several TWI modes must be combined in order to complete the desired action.

Example: Reading data from a serial EEPROM(AT24C02, random reading) involving the following steps:

1. The transfer must be initiated. (MT mode)

2. The EEPROM must be instructed what location should be read. (MT mode)

3. The reading must be performed. (MR mode)

4. The transfer must be finished. (MT mode)

• The Master must keep control of the bus during all these steps in atomic operation.

• A change in transfer direction is accomplished by transmitting a REPEATED START between the

transmission of the address byte and reception of the data.

S SLA+W A ADDRESS A Rs SLA+R A DATA A P

Master TransmitterMaster Transmitter Master ReceiverMaster Receiver

Transmitted from Slave to Master

S: START Rs: REPEATED START P: STOP

ATmega328PB TWIn Pins

TWI Control Register (TWCRn)

TWINT TWEA TWSTA TWSTO TWWC TWEN TWIE

1 * * * 0 1 0 0

TWCR0

TWI Interrupt Enable
‘1’: Enable TWI0 Interrupt.

TWI Enable
‘1’: TWI0 takes

control over the I/O

pins connected to the

SCL and SDA pins.

TWI Write Collision Flag
This bit is set when attempting

to write to the TWDR0 when

TWINT is low. This flag is

cleared by writing the TWDR0
register when TWINT is high.

TWI START Condition
The application writes ‘1’ to the TWSTA bit

when it desires TWI0 to become a Master on

the 2-wire Serial Bus. The TWI0 hardware

checks if the bus is available, and generates

a START condition on the bus if it is free. This

bit must be cleared by software when the

START condition has been transmitted

TWI0 Interrupt Flag
This bit is set by hardware when the

TWI0 has finished its current job

and expects application software

response. It must be cleared by

software by writing a logic ‘1’ to it.

TWI0 Enable Acknowledge
If the TWEA bit is written to ‘1’,

the ACK pulse is generated

on the TWI0 bus if the

conditions are met.

TWI STOP Condition
Writing ‘1’ to the TWSTO bit in Master mode will

generate a STOP condition on the 2-wire Serial Bus

TWI0. When the STOP condition is executed on the

bus, the TWSTO bit is cleared automatically.

TWI Status Register (TWSRn)

TWS7 TWS6 TWS5 TWS4 TWS3 TWPS1 TWPS0

* * * * * 0 0 0

TWSR0

TWI Bit Rate Prescaler
00: Divide by 1

01: Divide by 4

10: Divide by 16

11: Divide by 64

TWI Status Bits
The TWS[7:3] reflect the status of the

TWI0 logic and the 2-wire Serial Bus.

System Clock: 16 MHz, SCL: 400 kHz
SCL freq = F_CPU/(16 + 2 * TWBR * Prescaler)
SCL freq = 16,000,000Hz/(16+2*12*1)=16,000,000Hz/40=400kHz

TWI Bit Rate Register (TWBRn)

TWBR7 TWBR6 TWBR5 TWBR4 TWBR3 TWBR2 TWBR1 TWBR0

0 0 0 0 1 1 0 0

TWBR0

TWI Bit Rate Register
TWBR0 selects the division factor for the bit rate generator. The bit rate generator is a

frequency divider which generates the SCL clock frequency in the Master modes.

000011002 = 1210

System Clock: 16 MHz, SCL: 400 kHz
SCL freq = F_CPU/(16 + 2 * TWBR * Prescaler)
SCL freq = 16,000,000Hz/(16+2*12*1)=16,000,000Hz/40=400kHz

TWI0 Example I(1)

• Specifications:

 CPU clock: 16 MHz

 SCL: 400 kHz

 ADXL345 Address

 Write (SLA_W): 0xA6

 Read (SLA_R): 0xA7

• Make an application which reads ID and X-, Y-,

Z-axis acceleration values.

 Register addresses for

 ID: 0x00

 X-axis: 0x32 and 0x33

 Y-axis: 0x34 and 0x35

 Z-axis: 0x36 and 0x37

• Use polling method

TWI0 Example I(2)

ADXL345 I2C Device Addressing (1)

Multiple-Byte Write

Single-Byte Write

START STOP

ACK

Slave Addr + Write Register Address Data

ACK ACK

Master

Slave

START STOP

ACK

Slave Addr + Write Register Address Data

ACK ACK

Master

Slave

Data

ACK

TWI0 Example I(3)

ADXL345 I2C Device Addressing (2)

Multiple-Byte Read

S N PSlave Addr + RSlave Addr + W Register Addr RsMaster A

ASlave A A Data Data

Rs Repeated START N NACKS START P STOPA ACKA

Single-Byte Read

S N PSlave Addr + RSlave Addr + W Register Addr RsMaster

ASlave A A Data

TWI0 Example I(3)

ADXL345 I2C Device Addressing (2)

Rs Repeated START N NACKS START P STOPACKA

Single-Byte Read

S N PSlave Addr + RSlave Addr + W M. Addr (Upper 4 bits) RsMaster

ASlave A A Data

M. Addr (Lower 8 bits)

A

TWI0 Example I(4) – Read ADXL345 ID

// repeated START
TWCR0 = (1 << TWINT) | (1 << TWSTA) | (1 << TWEN);

// Wait for the transmission of repeated START
while (!(TWCR0 & (1 << TWINT)));
if ((TWSR0 & 0xF8) != 0x10)

return -1; // Error

TWDR0 = 0xA7; // Load SLA_R (SLAVE ADDRESS + READ)

// Clear TWINT to start transmission of SLA_R
TWCR0 = (1 << TWINT) | (1 << TWEN);

// Wait for the transmission of SLA_R
while (!(TWCR0 & (1 << TWINT)));
if ((TWSR0 & 0xF8) != 0x40)

return -1; // Error

// Clear TWINT to start reception. NAK will be returned.
TWCR0 = (1 << TWINT) | (1 << TWEN);
while (!(TWCR0 & (1 << TWINT))); // Wait for the reception
if ((TWSR0 & 0xF8) != 0x58)

return -1; // Error

// Send STOP condition
TWCR0 = (1 << TWINT) | (1 << TWSTO) | (1 << TWEN);

// Read received data (ID)
ADXL345_ID = TWDR0;

// Set SCL frequency to 400 kHz
TWSR0 = 0; // Prescaler = 1
TWBR0 = 12;

// Send START condition
TWCR0 = (1 << TWINT) | (1 << TWSTA) | (1 << TWEN);

// Wait for the transmission of START condition
while (!(TWCR0 & (1 << TWINT)));
if ((TWSR0 & 0xF8) != 0x08)

return -1; // Error

TWDR0 = 0xA6; // Load SLA_W (SLAVE ADDRESS + WRITE)

// Clear TWINT to start transmission of SLA_W
TWCR0 = (1 << TWINT) | (1 << TWEN);

// Wait for the transmission of SLA_W
while (!(TWCR0 & (1 << TWINT)));
if ((TWSR0 & 0xF8) != 0x18)

return -1; // Error

TWDR0 = 0x00; // Load register address to be read
TWCR0 = (1<<TWINT) | (1<<TWEN);

// Wait for the transmission of register address
while (!(TWCR0 & (1 << TWINT)));
if ((TWSR0 & 0xF8) != 0x28)

return -1; // Error

TWI0 Example I(5) – Read ADXL345 X-,Y-,Z-Axis Data

TWDR0 = 0xA7; // Load SLA_R (SLAVE ADDRESS + READ’)

// Clear TWINT to start transmission of SLA_R .
TWCR0 = (1 << TWINT) | (1 << TWEN);

// Wait for the transmission of SLA_R
while (!(TWCR0 & (1 << TWINT)));
if ((TWSR0 & 0xF8) != 0x40)

return -1; // Error

for (i=0; i<6; i++)
{

if (i < 5)
{

// Clear TWINT to start reception. ACK will be returned
TWCR0 = (1 << TWINT) | (1 << TWEN) | (1 << TWEA);
return_code = 0x50;

}
else
{

// Clear TWINT to start reception. NAK will be returned
TWCR0 = (1 << TWINT) | (1 << TWEN);
return_code = 0x58;

}
while (!(TWCR0 & (1 << TWINT))); // Wait for the reception of data
if ((TWSR0 & 0xF8) != return_code)

return -1; // Error
}
buff[i] = TWDR0; // Read received data and save it

}

// Send STOP condition
TWCR0 = (1 << TWINT) | (1 << TWSTO) | (1 << TWEN);

// Send START condition
TWCR0 = (1 << TWINT) | (1 << TWSTA) | (1 << TWEN);

// Wait for the transmission of START condition
while (!(TWCR0 & (1 << TWINT)));
if ((TWSR0 & 0xF8) != 0x08)

return -1; // Error

TWDR0 = 0xA6; // Load SLA_W (SLAVE ADDRESS + WRITE)

// Clear TWINT to start transmission of SLA_W.
TWCR0 = (1 << TWINT) | (1 << TWEN);

// Wait for the transmission of SLA_W
while (!(TWCR0 & (1 << TWINT)));
if ((TWSR0 & 0xF8) != 0x18)

return -1; // Error

TWDR0 = 0x32; // Load start address to be read
TWCR0 = (1<<TWINT) | (1<<TWEN);

// Wait for the transmission of start address
while (!(TWCR0 & (1 << TWINT)));
if ((TWSR0 & 0xF8) != 0x28)

return -1; // Error

// repeated START
TWCR0 = (1 << TWINT) | (1 << TWSTA) | (1 << TWEN);

// Wait for the transmission of repeated START
while (!(TWCR0 & (1 << TWINT)));
if ((TWSR0 & 0xF8) != 0x10)

return -1; // Error

Rev. 1.0 Biomedical Engineering, Inje University 47

